Skip to main content
Log in

Robust tracking control design for fractional-order interval type-2 fuzzy systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with an uncertainty and disturbance estimator-based tracking control problem for a class of interval type-2 fractional-order Takagi-Sugeno fuzzy systems subject to time-varying delays. The footprints of the uncertainty of the underlying fuzzy systems are taken into account to capture and model different levels of uncertainties. The uncertainty and disturbance estimator is used to promote the tracking behavior of rejecting disturbance in the control system. First, by applying the Lyapunov approach, we focus on the examination of stability and performance of the fractional-order tracking error system. Next, unknown system uncertainties, external disturbances and nonlinearities are accurately estimated via an appropriate filter design. Particularly, the proposed control technique does not require any prior knowledge about above said unknown factors and it only requires the bandwidth information about the low-pass filter. Then, four numerical examples with simulation results are presented in the end, to show the potential of the theoretical results of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wu, L.B., Park, J.H., Xie, X.P., Ren, Y.W., Yang, Z.: Distributed adaptive neural network consensus for a class of uncertain nonaffine nonlinear multi-agent systems. Nonlinear Dyn. 100, 1243–1255 (2020)

    Article  MATH  Google Scholar 

  2. Li, X.J., Yang, G.H.: Robust adaptive fault-tolerant control for a class of uncertain nonlinear time delay systems. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1554–1563 (2017)

    Article  Google Scholar 

  3. Wang, H., Shi, P., Li, H., Zhou, Q.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47(10), 3075–3087 (2017)

    Article  Google Scholar 

  4. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. control. 62(4), 2071–2076 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chadli, M., Karimi, H.: Robust observer design for unknown inputs Takagi-Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)

    Article  Google Scholar 

  6. Cheema, M.A.M., Fletcher, J.E., Farshadnia, M., Rahman, M.F.: Sliding mode based combined speed and direct thrust force control of linear permanent magnet synchronous motors with first-order plus integral sliding condition. IET Power Electron. 34(3), 2526–2538 (2019)

    Article  Google Scholar 

  7. Choi, Y.S., Choi, H.H., Jung, J.W.: Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives. IEEE Trans. Power Electron. 31(5), 3728–3737 (2016)

    Article  Google Scholar 

  8. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  9. Li, L., Chadli, M., Ding, S.X., Qiu, J., Yang, Y.: Diagnostic observer design for T-S fuzzy systems: application to real-time-weighted fault-detection approach. IEEE Trans. Fuzzy Syst. 26(2), 805–816 (2018)

    Article  Google Scholar 

  10. Wang, B., Zhang, D., Cheng, J., Park, Ju.H.: Fuzzy model-based nonfragile control of switched discrete-time systems. Nonlinear Dyn. 93, 2461–2471 (2018)

    Article  MATH  Google Scholar 

  11. Song, J., Niu, Y., Lam, J., Lam, H.K.: Fuzzy remote tracking control for randomly varying local nonlinear models under fading and missing measurements. IEEE Trans. Fuzzy Syst. 26(3), 1125–1237 (2018)

    Article  Google Scholar 

  12. Wang, Y., Xia, Y., Ahn, C.K., Zhu, Y.: Exponential stabilization of Takagi-Sugeno fuzzy systems with aperiodic sampling: an aperiodic adaptive event-triggered method. IEEE Trans. Syst. Man Cybern. 49(2), 444–454 (2019)

    Article  Google Scholar 

  13. Lu, Z., Ran, G., Xu, F., Lu, J.: Novel mixed-triggered filter design for interval type-2 fuzzy nonlinear Markovian jump systems with randomly occurring packet dropouts. Nonlinear Dyn. 97, 1525–1540 (2019)

    Article  MATH  Google Scholar 

  14. Li, H., Wang, J., Lam, H.K., Zhou, Q., Du, H.: Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1654–1663 (2016)

    Article  Google Scholar 

  15. Hassani, H., Zarei, J., Chadli, M., Qiu, J.: Unknown input observer design for interval type-2 T-S fuzzy systems with immeasurable premise variables. IEEE Trans. Cybern. 47(9), 2639–2650 (2017)

    Article  Google Scholar 

  16. Lam, H.K., Li, H., Deters, C., Secco, E.L., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2014)

    Article  Google Scholar 

  17. Li, H., Wu, C., Jing, X., Wu, L.: Security control of interval type-2 fuzzy system with two-terminal deception attacks under premise mismatch. Nonlinear Dyn. 102, 431–453 (2020)

    Article  Google Scholar 

  18. Li, H., Wu, C., Shi, P., Gao, Y.: Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. 45(11), 2378–2389 (2015)

    Article  Google Scholar 

  19. Wu, S.L., Khaleel, M.A.: Parameter optimization in waveform relaxation for fractional-order \( RC \) circuits. IEEE Trans. Circuits Syst. I Reg. Papers. 164(7), 1781–1790 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiao, M., Zheng, W.X., Jiang, G., Cao, J.: Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative. IEEE Trans. Neural Netw. learn. Syst. 26(12), 3201–3214 (2015)

    Article  MathSciNet  Google Scholar 

  21. Bao, H., Park, J.U.H., Cao, J.: Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw. 81, 16–28 (2016)

    Article  MATH  Google Scholar 

  22. Li, Y., Li, J.: Stability analysis of fractional order systems based on T-S fuzzy model with the fractional order \({\alpha }\):0\(<\)\({\alpha }<\)1. Nonlinear Dyn. 78(4), 2909–2919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Sun, G., Ma, Z.: Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control. IEEE/ASME Trans. Mechatronics. 22(6), 2643–2653 (2017)

    Article  Google Scholar 

  25. Tan, Y., Xiong, M., Du, D., Fei, S.: Observer-based robust control for fractional-order nonlinear uncertain systems with input saturation and measurement quantization. Nonlinear Anal. Hybrid Syst. 34, 45–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J., Ye, Y., Pan, X., Gao, X., Zhuang, C.: Fractional zero-phase filtering based on the Riemann-Liouville integral. Signal Process. 98, 150–157 (2014)

    Article  Google Scholar 

  27. Jafari, P., Teshnehlab, M., Kakhki, M.T.: Adaptive type-2 fuzzy system for synchronisation and stabilisation of chaotic non-linear fractional order systems. IET Control Theory Appl. 12(2), 183–193 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, B., Liu, Z., Li, S.E., Moura, S.J., Peng, H.: State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model. IEEE Trans. Control Syst. Technol. 25(1), 3–11 (2017)

    Article  Google Scholar 

  29. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control. 24(6), 993–1015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, H., Sun, Z., Liu, H., Sun, F., Deng, J.: State feedback integral control of networked control systems with external disturbance. IET Control Theory Appl. 5(2), 283–290 (2011)

    Article  MathSciNet  Google Scholar 

  31. Park, M.J., Kwon, O.M., Park, Ju.H., Lee, S.M., Cha, E.J.: \(H_\infty \) state estimation for discrete-time neural networks with interval time-varying delays and probabilistic diverging disturbances. Neurocomputing 153, 255–270 (2015)

    Article  Google Scholar 

  32. Wang, L., Wang, Z., Han, Q.L., Wei, G.: Synchronization control for a class of discrete-time dynamical networks with packet dropouts: a coding-decoding-based approach. IEEE Trans. Cybern. 48(8), 2437–2448 (2018)

    Article  Google Scholar 

  33. Yang, J., Su, J., Li, S., Yu, X.: High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Ind. Inf. 10(1), 604–614 (2014)

    Article  Google Scholar 

  34. Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications. CRC Press, Boca Rato (2017)

    Google Scholar 

  35. Ren, B., Zhong, Q.C., Chen, J.: Asymptotic reference tracking and disturbance rejection of UDE-based robust control. IEEE Trans. Ind. Electron. 64(4), 3166–3176 (2017)

    Article  Google Scholar 

  36. Zhong, Q.C., Rees, D.: Control of uncertain LTI systems based on an uncertainty and disturbance estimator. ASME J. Dyn. Sys. Meas. Control. 126(4), 905–910 (2004)

    Article  Google Scholar 

  37. Chen, J., Ren, B., Zhong, Q.C.: UDE-based trajectory tracking control of piezoelectric stages. IEEE Trans. Ind. Electron. 63(10), 6450–6459 (2016)

    Article  Google Scholar 

  38. Chen, L., Wu, R., Cheng, Y., Chen, Y., Zhuang, C.: Delay-dependent and order-dependent stability and stabilization of fractional-order linear systems with time-varying delay. IEEE Trans Circuits Syst. II Reg. Papers. 67, 1064–1068 (2020)

    Google Scholar 

  39. Boyd, S, Ghaoui, L.EL., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM. Philadelphia.(1994)

  40. Zhang, X., Huang, W., Wang, Q.G.: Robust \(H_\infty \) adaptive sliding mode fault tolerant control for T-S fuzzy fractional order systems with mismatched disturbances, IEEE Trans. Circuits Syst. I Reg. Papers. 68(3), 1297–1307 (2021)

    Article  Google Scholar 

  41. Shanmugam, S., Joo, Y.H.: Design of interval type-2 fuzzy-based sampled-data controller for nonlinear systems using novel fuzzy Lyapunov functional and its application to PMSM. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 1297–1307 (2021)

    Article  Google Scholar 

  42. Toumi, Y.K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control. 112(1), 133–142 (1990)

    Article  MATH  Google Scholar 

  43. Song, S., Zhang, B., Song, X., Zhang, Z.: Neuro-fuzzy-based adaptive dynamic surface control for fractional-order nonlinear strict-feedback systems with input constraint. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3575–3586 (2021)

    Article  Google Scholar 

  44. Song, S., Park, J.H., Zhang, B., Song, X.: Observer-based adaptive hybrid fuzzy resilient control for fractional-order nonlinear systems with time-varying delays and actuator failures. IEEE Trans. Fuzzy Syst. 29(3), 471–485 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work of first, third and fourth authors was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A6A1A12047945) and in part by the Grand Information Technology Research Center Support Program supervised by the Institute for Information & Communications Technology Planning & Evaluation (IITP) under Grant IITP-2021-2020-0-01462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh-Min Kwon.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavikumar, R., Sakthivel, R., Kwon, OM. et al. Robust tracking control design for fractional-order interval type-2 fuzzy systems. Nonlinear Dyn 107, 3611–3628 (2022). https://doi.org/10.1007/s11071-021-07163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07163-y

Keywords

Navigation