Skip to main content
Log in

Event-triggered output feedback sliding mode control of mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with event-triggered sliding mode control (SMC) for uncertain mechanical systems subject to limited communication capacity. We consider the scenario where samplings of the system output and of the control input are generated by two different event-triggered strategies. An event-triggered mechanism is incorporated in the sensor to decide when the position information is transmitted from the sensor to observer. The super-twisting algorithm (STA)-based observer is developed to recover the unmeasured velocities by using event-triggered sampling of the position information. Besides, an SMC law is proposed and an input event-triggered mechanism is introduced to decide when the control signal is transmitted over the network to the actuator side. The stability for the overall closed-loop system is analyzed. It is proved that under the proposed output and input event-triggered strategies, there is no Zeno behavior exhibited. Examples are finally presented to illustrate the effectiveness of the proposed event-triggered STA-based observer and the event-triggered SMC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Utkin, V.: Variable structure systems with sliding mode. IEEE Trans. Automat. Contr. 22(2), 212–222 (1977)

    Article  MathSciNet  Google Scholar 

  2. Edwards, C., Spurgeon, S.K.: Sliding mode control: theory and applications. Taylor & Francis, New York (1998)

    Book  Google Scholar 

  3. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58, 1247–1263 (1993)

    Article  MathSciNet  Google Scholar 

  4. Yu, X., Feng, Y., Man, Z.: Terminal sliding mode control-an overview. IEEE Open Journal of the Industrial Electronics Society (2020). https://doi.org/10.1109/OJIES.2020.3040412

  5. Hou, H., Yu, X., Fu, Z.: Sliding mode control of networked control systems: an auxiliary matrices based approach. IEEE Trans. Automat. Contr. (2021). https://doi.org/10.1109/TAC.2021.3103882

    Article  Google Scholar 

  6. Basin, M.V., Yu, P., Shtessel, Y.B.: Hypersonic missile adaptive sliding mode control using finite-and fixed-time observers. IEEE Trans. Ind. Electron. 65(1), 930–941 (2017)

    Article  Google Scholar 

  7. Ding, S., Mei, K., Li, S.: A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Automat. Contr. 64(6), 2545–2552 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ding, S., Park, J., Chen, C.: Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)

    Article  MathSciNet  Google Scholar 

  9. Moreno, A.J., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Contr. 57(4), 1035–1040 (2012)

    Article  MathSciNet  Google Scholar 

  10. Yu, S., Long, X.: Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica 54, 158–165 (2015)

    Article  MathSciNet  Google Scholar 

  11. Yan, Y., Yu, S., Yu, X.: Quantized super-twisting algorithm based sliding mode control. Automatica 105, 43–48 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hou, Q., Ding, S., Yu, X.: Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer. IEEE Trans. Energy Convers. (2020). https://doi.org/10.1109/TEC.2020.2985054

    Article  Google Scholar 

  13. Feng, Y., Yu, X., Han, F.: High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor. IEEE Trans. Ind. Electron. 60(10), 4472–4480 (2013)

    Article  Google Scholar 

  14. Hou, H., Yu, X., Xu, L., Rsetam, K., Cao, Z.: Finite-time continuous terminal sliding mode control of servo motor systems. IEEE Trans. Ind. Electron. 67(7), 5647–5656 (2019)

    Article  Google Scholar 

  15. Levant, A., Livne, M.: Robust exact filtering differentiators. Eur. J. Control 55, 33–44 (2020)

    Article  MathSciNet  Google Scholar 

  16. Zhang, J., Wang, H., Ma, M., Yu, M., Yazdani, A., Chen, L.: Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine. IEEE Trans. Veh. Technol. 69(12), 14713–14726 (2020)

    Article  Google Scholar 

  17. Hu, Y., Wang, H., He, S., Zheng, J., Ping, Z., Shao, K., Man, Z.: Adaptive tracking control of an electronic throttle valve based on recursive terminal sliding mode. IEEE Trans. Veh. Technol. 70(1), 251–262 (2020)

    Article  Google Scholar 

  18. Hu, Y., Wang, H., Cao, Z., Zheng, J., Ping, Z., Chen, L., Jin, X.: Extreme-learning-machine-based FNTSM control strategy for electronic throttle. Neural. Comput. Appl. 32(18), 14507–14518 (2020)

    Article  Google Scholar 

  19. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Automat. Contr. 50(11), 1785–1789 (2005)

    Article  MathSciNet  Google Scholar 

  20. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 948–988 (2014)

    Article  MathSciNet  Google Scholar 

  21. Zhang, X., Han, Q., Zhang, B.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Informat. 13(1), 4–16 (2016)

    Article  Google Scholar 

  22. Yan, J., Yang, X., Luo, X., Guan, X.: Dynamic gain control of teleoperating cyber-physical system with time-varying delay. Nonlinear Dyn. 95(4), 3049–3062 (2019)

    Article  Google Scholar 

  23. Liu, J., Zhang, Y., Yu, Y., Sun, C.: Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 5029–5037 (2020)

    Article  MathSciNet  Google Scholar 

  24. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Contr. 64(1), 290–297 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zheng, Z., Lau, G.K., Xie, L.: Event-triggered control for a saturated nonlinear system with prescribed performance and finite-time convergence. Int. J. Robust Nonlin. 28(7), 5312–5325 (2018)

    Article  MathSciNet  Google Scholar 

  26. Abdelrahim, M., Postoyan, R., Daafouz, J., Nes̆ić, D.: Robust event-triggered output feedback controllers for nonlinear systems. Automatica 75, 96–108 (2017)

    Article  MathSciNet  Google Scholar 

  27. Huang, Y., Wang, J., Shi, D., Shi, L.: Toward event-triggered extended state observer. IEEE Trans. Autom. Contr. 63(6), 1842–1849 (2018)

    Article  MathSciNet  Google Scholar 

  28. Cheng, Y., Zhang, J., Du, H., Wen, G., Lin, X.: Global event-triggered output feedback stabilization of a class of nonlinear systems. IEEE Trans. Syst., Man, Cybern. Syst. 51(7), 4040–4047 (2021)

    Article  Google Scholar 

  29. Wu, L., Gao, Y., Liu, J., Li, H.: Event-triggered sliding mode control of stochastic systems via output feedback. Automatica 82, 79–92 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wen, S., Huang, T., Yu, X., Chen, M.Z.Q., Zeng, Z.: Sliding-mode control of Memristive Chuas systems via the event-based method. IEEE Trans. Circuits Syst. II, Exp. Briefs 64(1), 81–85 (2017)

    Article  Google Scholar 

  31. Behera, A.K., Bandyopadhyay, B., Cucuzzella, M., Ferrara, A., Yu, X.: A survey on event-triggered sliding mode control. IEEE Trans. Emerg. Sel. Topics Power Electron (2021). https://doi.org/10.1109/JESTIE.2021.3087938

    Article  Google Scholar 

  32. Cucuzzella, M., Ferrara, A.: Practical second order sliding modes in single-loop networked control of nonlinear systems. Automatica 89, 235–240 (2018)

  33. Ren, J., Sun, J., Fu, J.: Finite-time event-triggered sliding mode control for one-sided Lipschitz nonlinear systems with uncertainties. Nonlinear Dyn. 103(1), 865–882 (2021)

    Article  Google Scholar 

  34. Yang, C., Xia, J., Park, J.H., Shen, H., Wang, J.: Sliding mode control for uncertain active vehicle suspension systems: an event-triggered \(H_{\infty }\) control scheme. Nonlinear Dyn. 103(4), 3209–3221 (2021)

    Article  Google Scholar 

  35. Yan, Y., Yu, S., Sun, C.: Quantization-based event-triggered sliding mode tracking control of mechanical systems. Inf. Sci. 523, 296–306 (2020)

    Article  MathSciNet  Google Scholar 

  36. Yan, Y., Yu, S., Sun, C.: Event-triggered sliding mode tracking control of autonomous surface vehicles. J. Franklin Inst. 358(8), 4393–4409 (2021)

    Article  MathSciNet  Google Scholar 

  37. Li, M., Long, Y., Li, T., Bai, W.: Observer-based adaptive fuzzy event-triggered path following control of marine surface vessel. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01065-2

    Article  Google Scholar 

  38. Liu, M., Zhang, L., Shi, P., Zhao, Y.: Fault estimation sliding-mode observer with digital communication constraints. IEEE Trans. Automat. Contr. 63(10), 3434–3441 (2018)

    Article  MathSciNet  Google Scholar 

  39. Donkers, M.C.F., Heemels, W.P.M.H.: Output-based event-triggered control with guaranteed \(L_{\infty }\)-gain and improved and decentralized event-triggering. IEEE Trans. Automat. Contr. 57(6), 1362–1376 (2011)

    Article  MathSciNet  Google Scholar 

  40. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  41. Polycarpou, M. M., Ioannou, P. A.: A robust adaptive nonlinear control design. In: 1993 American control conference (pp. 1365–1369). IEEE

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China under Grants 62173054, 62073054, 6217023627, 51939001, in part by China Postdoctoral Science Foundation under Grant 2020M680930, in part by the Natural Science Foundation of Liaoning under Grant 2021MS142 and in part by the Dalian Innovative Support Scheme for High-Level Talents under Grant 2019RQ092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wang, R., Yu, S. et al. Event-triggered output feedback sliding mode control of mechanical systems. Nonlinear Dyn 107, 3543–3555 (2022). https://doi.org/10.1007/s11071-021-07152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07152-1

Keywords

Navigation