Skip to main content
Log in

Nonlinear forced vibration analysis of composite beam considering internal damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In a structure made of composite material, dynamic behavior must be analyzed in consideration of internal damping that occurs due to the damping property of the matrix material. In the present study, a methodology for modeling the damping properties of composite materials from the measured damping parameters is proposed. The hierarchical finite element method is used to analyze the nonlinear forced vibration of composite beams. The beam element used in the analysis has two nodal points, and each node has three degrees of freedom. The displacement of composite beam elements is expressed using Euler–Bernoulli beam theory, and the strain–displacement relationship is expressed by von Kármán theory. The internal damping of the composite material is calculated from the measured damping parameters. The nonlinear forced vibration equation is solved using the IHB method. To prove the effectiveness of the proposed method, the results calculated using the Conventional finite element method are compared with the results calculated by the method proposed in the paper. Based on this, a nonlinear forced vibration analysis considering the internal damping of the composite material is carried out and the corresponding conclusions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Amabili, M.: Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  2. Arab, S.B., Rodrigues, J.D., Bouaziz, S., Haddar, M.: Stability analysis of internally damped rotating composite shafts using a finite element formulation. Comptes Rendus Méc. 346(4), 291–307 (2018)

    Article  Google Scholar 

  3. Ri, K., Han, P., Kim, I., Kim, W., Cha, H.: Stability analysis of composite shafts considering internal damping and coupling Effect. Int. J. Struct. Stab. Dyn. 20(11), 1–25 (2020)

    Article  MathSciNet  Google Scholar 

  4. Youzera, H., Meftah, S.A., Challamel, N., Tounsi, A.: Nonlinear damping and forced vibration analysis of laminated composite beams. Compos. Part B-Eng. 43(3), 1147–1154 (2012)

    Article  Google Scholar 

  5. Stoykov, S., Margenov, S.: Nonlinear vibrations of 3D laminated composite beams. Math. Probl. Eng. 2014, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chakrapani, S.K., Barnard, D.J., Dayal, V.: Nonlinear forced vibration of carbon fiber/epoxy prepreg composite beams: Theory and experiment. Compos. Part B-Eng. 91, 513–521 (2016)

    Article  Google Scholar 

  7. Kim, K., Ri, K., Yun, C., Kim, C., Kim, Y.: Analysis of the nonlinear forced vibration and stability of composite beams using the reduced-order model. AIP Adv. 11, 035220 (2021)

    Article  Google Scholar 

  8. Alijani, F., Amabili, M., Balasubramanian, P., Carra, S., Ferrari, G., Garziera, R.: Damping for large-amplitude vibrations of plates and curved panels, Part 1: modeling and experiments. Int. J. Nonlinear Mech. 85, 23–40 (2016)

    Article  Google Scholar 

  9. Amabili, M.: Nonlinear vibrations of viscoelastic rectangular plates. J. Sound Vib. 362, 142–156 (2016)

    Article  Google Scholar 

  10. Balasubramanian, P., Ferrari, G., Amabili, M.: Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime. Mech. Syst. Signal Process. 111, 376–398 (2018)

    Article  Google Scholar 

  11. Amabili, M.: Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018)

    Article  MathSciNet  Google Scholar 

  12. Udupa, K.M., Varadan, T.K.: Hierarchical finite element method for rotating beams. J. Sound Vib. 138(3), 447–456 (1990)

    Article  Google Scholar 

  13. Ribeiro, P.: Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames. J. Sound Vib. 246(2), 225–244 (2001)

    Article  Google Scholar 

  14. Ghayour, R., Ghayour, M., Ziaei-Rad, S.: Vibration analysis of tapered rotating composite beams using the hierarchical finite element. Appl Comput Mech 4(2), 157–170 (2010)

    Google Scholar 

  15. Sino, R., Baranger, T.N., Chatelet, E., Jacquet, G.: Dynamic analysis of a rotating composite shaft. Compos. Sci. Technol. 68(2), 337–434 (2008)

    Article  Google Scholar 

  16. Genta, G., Amati, N.: Hysteretic damping in rotordynamics: an equivalent formulation. J. Sound Vib. 329(22), 4772–4784 (2010)

    Article  Google Scholar 

  17. Jin, G., Ye, T., Zhu, S.: Structural Vibration: A Uniform Accurate Solution for Laminated Beams, Plates and Shells with General Boundary Conditions. Science Press, China (2015)

    MATH  Google Scholar 

  18. Chandrashekhara, K., Bangera, K.M.: Free vibration of composite beams using a refined shear flexible beam element. Comput. Struct. 43, 719–727 (1992)

    Article  Google Scholar 

  19. Li, J., Hua, H.: Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory. Compos. Struct. 89, 433–442 (2009)

    Article  Google Scholar 

  20. Simsek, M., Kocatürk, T.: Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load. J. Sound Vib. 320, 235–253 (2009)

    Article  Google Scholar 

  21. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Mech. 48(4), 959–964 (1981)

    MATH  Google Scholar 

  22. Lau, S.L., Cheung, Y.K., Wu, S.Y.: A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. J. Mech. 49(4), 849–853 (1982)

    MATH  Google Scholar 

  23. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. J. Mech. 50(4a), 871–876 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Lau, S.L., Zhang, W.S.: Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method. J. Mech. 59(1), 153–160 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Ri, K., Han, P., Kim, I., Kim, W., Cha, H.: Nonlinear forced vibration analysis of composite beam combined with DQFEM and IHB. AIP Adv. 10, 085112 (2020)

    Article  Google Scholar 

  26. Ri, K., Han, W., Pak, C., Kim, K., Yun, C.: Nonlinear forced vibration analysis of the composite shaft-disk system combined the reduced-order model with the IHB method. Nonlinear Dyn. 104, 3347–3364 (2021)

    Article  Google Scholar 

  27. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)

    Article  Google Scholar 

  28. Huang, J.L., Su, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330, 471–485 (2011)

    Article  Google Scholar 

  29. Dimitriadis, G.: Introduction to Nonlinear Aeroelasticity. Wiley, New Jersey (2017)

    Book  Google Scholar 

  30. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New Jersey (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangchol Ri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Ri, K., Yun, C. et al. Nonlinear forced vibration analysis of composite beam considering internal damping. Nonlinear Dyn 107, 3407–3423 (2022). https://doi.org/10.1007/s11071-021-07148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07148-x

Keywords

Navigation