Skip to main content
Log in

Evolution behaviour of kink breathers and lump-\(\pmb {M}\)-solitons (\(\pmb {M\rightarrow \infty }\)) for the (3+1)-dimensional Hirota–Satsuma–Ito-like equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, some novel lump solutions and interaction phenomenon between lump and kink M-soliton are investigated. Firstly, we study the evolution and degeneration behaviour of kink breather wave solution with different forms for the (3+1)-dimensional Hirota–Satsuma–Ito-like equation by symbolic computation and Hirota bilinear form. In the process of degeneration of breather waves, some novel lump solutions are derived by the limit method. In addition, M-fissionable soliton and the interaction phenomenon between lump solutions and kink M-solitons (lump-M-solitons) are investigated, and the theorem and corollary about the conditions for the existence of the interaction phenomenon are given and proved further. The lump-M-solitons with different types are studied to illustrate the correctness and availability of the given theorem and corollary, such as lump-cos type, lump-cosh-exponential type and lump-cosh-cos-cosh type. Several three-dimensional figures are drawn to better depict the nonlinear dynamic behaviours including the oscillation of breather wave, the emergence of lump, the evolution behaviour of fission and fusion of lump-M-solitons and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article, and the figures are concrete expression.

References

  1. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)

    Article  MATH  Google Scholar 

  2. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable system. Rev. Mod. Phys. 61(4), 763–915 (1989)

    Article  Google Scholar 

  3. Mihalache, D.: Mulitidimensional localized structures in optics and Bose-Einstein condensates: a selection of recent studies. J. Roman. Phys. 59(3), 295–312 (2014)

    Google Scholar 

  4. Forte, S.: Quantum mechanics and field theory with fractional spin and statistics. Appl. Phys. Lett. 64(1), 193–236 (1992)

    MathSciNet  Google Scholar 

  5. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795 (2010)

    Article  Google Scholar 

  6. Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B At. Mol. Opt. Phys. 49(17), 170502 (2016)

    Article  Google Scholar 

  7. Dai, Z.D., Wang, C.J., Liu, J.: Inclined periodic homoclinic breather and rogue waves for the (1+1)-dimensional Boussinesq equation. Pramana J. Phys. 83(4), 473–480 (2014)

    Article  Google Scholar 

  8. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  9. Liu, J., Mu, G., Dai, Z.D., Lou, H.Y.: Spatiotemporal deformation of multi-soliton to (2+1)-dimensional KdV equation. Nonlinear Dyn. 86, 355–360 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34(1), 122–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Article  Google Scholar 

  12. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Article  Google Scholar 

  13. Ma, W.X., Yong, X.L., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75(1), 289–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, C.H., Deng, A.P.: Lump solution of (2+1)-dimensional Boussineaq equation. Commun. Theor. Phys. 65(05), 546–552 (2016)

    Article  MATH  Google Scholar 

  15. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial different equations via Horita bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)

    Article  MATH  Google Scholar 

  16. Zhao, Z.L., Chen, Y., Han, B.: Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. Mod. Phys. Lett. B 31(14), 1750157 (2017)

    Article  MathSciNet  Google Scholar 

  17. Wang, C.J.: Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dynam. 84(2), 697–702 (2016)

    Article  MathSciNet  Google Scholar 

  18. Peng, W.Q., Tian, S.F., Zhang, T.T.: Analysis on lump, lump off and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys. Lett. A 382, 2701–2708 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manakov, M.Q., Zakharov, V.E., Bordag, L.A.: Analysis on lump, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Article  Google Scholar 

  20. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19(10), 2180–2186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Satsum, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive system. J. Math. Phys. 20(7), 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, W.X., Zhou, Y., Dougherty, R.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int. J. Mod. Phys. B 30, 1640018 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tan, W., Dai, Z.D., Xie, J.L., Qiu, D.Q.: Parameter limit method and its application in the (4+1)-dimensional Fokas equation. Comput. Math. App. 75(12), 4214–4220 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Tan, W., Dai, Z.D., Xie, J.L., Yin, Z.Y.: Dynamics of multi-breathers, \(N\)-solitons and \(M\)-lump solutions in the (2+1)-dimensional KdV equation. Nonlinear Dynam. 96, 1605–1614 (2019)

    Article  MATH  Google Scholar 

  25. Wang, C.J., Fang, H., Tang, X.X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dynam. 95, 2943–2961 (2019)

    Article  MATH  Google Scholar 

  26. Tan, W.: Some new dynamical behaviour of double breathers and lump-\(N\)-solitons for the Ito equation. Int. J. Comput. Math. 98(5), 961–974 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma, W.X., Zhang, H.Q.: Lump solutions to to the (2+1)-dimensional Sawada- Kotera equation. Nonlinear Dynam. 87(4), 2305–2310 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ren, B., Lin, J., Lou, Z.M.: Lump and their interaction solutions of a (2+1)-dimensional generalized potential Kadomtsev-Petviashvili equation. J. App. Anal. Comput. 10(3), 935–945 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Tan, W., Dai, Z.D.: Dynamics of kinky wave for (3+1)-dimensional potential Yu-Tada-Sasa-Fukuyama equation. Nonlinear Dynam. 85(2), 817–823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, Y., Tian, B., Xie, X.Y., Yin, H.M.: Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Wave Random Complex. 28(3), 544–552 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wang, H., Tian, S.F., Chen, Y., Zhang, T.T.: Dynamics of kink solitary waves and lump waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq equation. Int. J. Comput. Math. 97(11), 2178–2190 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Verma, P., Kaur, L.: Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomtsev-Petviashvili(BPK)-Boussinesq equation. Appl. Math. Comput. 346, 879–886 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (1980)

    Book  Google Scholar 

  35. Ma, W.X.: N-soliton solution of a combined pKP-BKP equation. J. Geom. Phys. 165, 104191 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, S.J., Lü, X., Ma, W.X.: Bäcklund transformation, exact soluton and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Num. Simul. 83, 105135 (2020)

    Article  MATH  Google Scholar 

  37. Zhou, Y., Manukure, S., Ma, W.X.: Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun. Nonlinear Sci. Num. Simul. 68, 56–62 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hirota, R., Satsuma, J.: \(N\)-soliton solutions of model equation for shallow water waves. J. Phys. Soc. Japan 40(2), 611–612 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tan, W., Zhang, W., Zhang, J.: Evolutionary behaviour of breathers and interaction solutions with \(M\)-solitons for (2+1)-dimensional KdV system. Appl. Math. Lett. 101((C)), 106063 (2020)

  40. Tian, Y., Dai, Z.D.: Rogue waves and new multi-wave solutions of the (2+1)-dimensional Ito equation. Z. Naturforsch. A 70(6), 437–443 (2015)

    Article  Google Scholar 

  41. Chen, A.H., Wang, F.F.: Fissionable wave solutions, lump solutions and interactional solutions for the (2+1)-dimensional Sawada-Kotera equation. Phys. Scr. 94(5), 055206 (2019)

  42. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional breaking soliton equation. Phys. Lett. A 382(19), 1268–1274 (2018)

    Article  MathSciNet  Google Scholar 

  43. Wang, X.B., Tian, S.F., Qin, C.Y., Zhang, T.T.: Dynamics of the breathers, rogue waves and solitary waves in the (2+1)-dimensional Ito equation. Appl. Math. Lett. 68, 40–47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dynam. 89(1), 1539–1544 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to referees for their enthusiastic guidance and help. This work was supported by Scientific and Technological Innovation Team of Nonlinear Analysis and Algebra with Their Applications in Universities of Yunnan Province, China, Grant No. 2020CXTD25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Xing Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Ethical approval

The authors ensure the compliance with ethical standards for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LX. Evolution behaviour of kink breathers and lump-\(\pmb {M}\)-solitons (\(\pmb {M\rightarrow \infty }\)) for the (3+1)-dimensional Hirota–Satsuma–Ito-like equation. Nonlinear Dyn 107, 3779–3790 (2022). https://doi.org/10.1007/s11071-021-07144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07144-1

Keywords

Navigation