Skip to main content
Log in

Parameter estimation, data compression and stochastic noise elimination in robotics: a wavelet domain-based integrated approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Accurate parameter estimation in presence of stochastic noise is the essential part of almost all control hardware of the plants. However, the optimal design of the control hardware depends on processing power and installed memory. The proposed research investigation focuses on precise parameter estimation from compressed temporal data of error dynamics with exiguous susceptibility to the robot’s controllability. Instead of using Maximum Likelihood estimation (MLE) and Least Squares (LS) estimation in the time domain, the proposed method exploits the recursive wavelet domain’s properties to selectively store the error data coefficients negating the data related to noise. As a result, data compression is achieved. The proposed algorithm may be directly implemented on any scalable “Very Large Scale Integration” (VLSI) circuit due to the recursive implementation. For the evaluation of robustness, dynamic parameter variation is considered. The variation in scalar & vector-valued error is considered to evaluate the performance of the stochastic system. The proposed algorithm implementation is demonstrated experimentally on commercially available Omni Bundle robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Martin, M.O., Swevers, J., Verdonck, W.: Maximum likelihood identification of a dynamic robot model: implementation issues. Int. J. Robot. Res. 21(2), 89–96 (2002). https://doi.org/10.1177/027836402760475379

    Article  Google Scholar 

  2. Rana, R., Gaur, P., Agarwal, V., Parthasarathy, H.: Tremor estimation and removal in robot-assisted surgery using lie groups and EKF. Robotica 37(11), 1904–1921 (2019)

    Article  Google Scholar 

  3. Lelewer, D.A., Hirschberg, D.S.: Data compression. ACM Comput. Surveys 19(3), 261–296 (1987)

    Article  Google Scholar 

  4. Li, Q., Jianming, H., Yi, Z.: A flow volumes data compression approach for traffic network based on principal component analysis, in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Sep./Oct. 2007, pp. 125–130

  5. Li, L., Su, X., Zhang, Y., Hu, J., Li, Z.: Traffic prediction, data compression, abnormal data detection and missing data imputation: An integrated study based on the decomposition of traffic time series, in Proc. IEEE 17th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 282–289

  6. Guitton, A., Skordylis, A., Trigoni, N.: Utilizing correlations to compress time-series in traffic monitoring sensor networks, in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. (2007), pp. 2479–2483

  7. Skordylis, A., Guitton, A., Trigoni, N.: Correlation-based data dissemination in traffic monitoring sensor networks, in Proc. ACM CoNEXT Conf., 2006, p. 42

  8. Srisooksai, T., Keamarungsi, K., Lamsrichan, P., Araki, K.: Practical data compression in wireless sensor networks: a survey. J. Netw. Comput. Appl. 35(1), 37–59 (2012)

    Article  Google Scholar 

  9. Klimenko, S., Mitselmakher, G., Sazonov, A.: Losless compression of LIGO data, California Inst. Technol., Pasadena, and Massachusetts Inst. Technol., Cambridge, MA, USA, Tech. Note LIGO-T000076-00-D (2000)

  10. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M.: Wavelet Toolbox User’s Guide. MathWorks, Natick, MA, USA (1996)

    MATH  Google Scholar 

  11. Ding, J., Zhang, Z., Ma, X.: A method for urban traffic data compression based on wavelet-PCA, in Proc. 4th Int. Joint Conf. Comput. Sci. Optim. (CSO), Apr. 2011, pp. 1030–1034

  12. Qiao, F., Liu, H., Yu, L.: Incorporating wavelet decomposition technique to compress TransGuide intelligent transportation system data. Transp. Res. Rec. J. Transp. Res. Board 1968(1), 63–74 (2006)

    Article  Google Scholar 

  13. Xiao, Y., Xie, Y.-M., Lu, L., Gao, S.: The traffic data compression and decompression for intelligent traffic systems based on two-dimensional wavelet transformation, in Proc. 7th Int. Conf. Signal Process. (ICSP), vol. 3. Aug./Sep. 2004, pp. 2560–2563

  14. Agarwal, S., Regentova, E.E., Kachroo, P., Verma, H.: Multidimensional compression of ITS data using wavelet-based compression techniques. IEEE Trans. Intell. Transp. Syst. 18(7), 1907–1917 (2017). https://doi.org/10.1109/TITS.2016.2613982

    Article  Google Scholar 

  15. Ku, C.T., Hung, K.C., Wu, T.C., Wang, H.S.: Wavelet-based ECG data compression system with linear quality control scheme. IEEE Trans. Biomed. Eng. 57(6), 1399–1409 (2010). https://doi.org/10.1109/TBME.2009.2037605

    Article  Google Scholar 

  16. Salomon, D.: Data Compression: The Complete Reference. Springer, New York, NY, USA (2004)

    MATH  Google Scholar 

  17. Chui, C.K.: An Introduction to Wavelets, vol. 1. Academic, San Francisco, CA, USA (1992)

    Book  Google Scholar 

  18. Adeli, H., Karim, A.: Wavelets in Intelligent Transportation Systems. Wiley, Hoboken, NJ, USA (2005)

    MATH  Google Scholar 

  19. Lin, C.M., Boldbaatar, E.A.: Fault accommodation control for a biped robot using a recurrent wavelet Elman neural network. IEEE Syst. J. 11(4), 2882–2893 (2017). https://doi.org/10.1109/JSYST.2015.2409888

    Article  Google Scholar 

  20. Moreno-Valenzuela J., Aguilar-Avelar C.: Identification of underactuated mechanical systems. In: Motion Control of Underactuated Mechanical Systems. Intelligent Systems, Control and Automation: Science and Engineering, vol 88. Springer (2018)

  21. Yen, V.T., Nan, W.Y., Van Cuong, P., et al.: Int. J. Control Autom. Syst. 15, 2930 (2017). https://doi.org/10.1007/s12555-016-0371-5

    Article  Google Scholar 

  22. Rana, R., Agarwal, V., Parthasarthy, H.: Wavelet transformation based tremor removal. In: 2015 International Conference on Computer, Communication and Control (IC4), 2015, pp. 1–3. https://doi.org/10.1109/IC4.2015.7375544

  23. Yang, C., Jiang, Y., He, W., Na, J., Li, Z., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electr. 65(10), 8112–8123 (2018). https://doi.org/10.1109/TIE.2018.2803773

    Article  Google Scholar 

  24. Kuang, W.T., Morris, A.S.: Using short-time Fourier transform and wavelet packet filter banks for improved frequency measurement in a Doppler robot tracking system. IEEE Trans. Instrum. Meas. 51(3), 440–444 (2002). https://doi.org/10.1109/TIM.2002.1017713

  25. Sharma, Manish, Verma, Ajay: Wavelet reduced order observer based adaptive tracking control for a class of uncertain multiple time delay nonlinear systems subjected to actuator saturation using actor critic architecture. Proc. Eng. 38, 1297–1308 (2012). https://doi.org/10.1016/j.proeng.2012.06.160. (ISSN 1877-7058,)

    Article  Google Scholar 

  26. Oweiss, K.G., Mason, A., Suhail, Y., Kamboh, A.M., Thomson, K.E.: A scalable wavelet transform VLSI architecture for real-time signal processing in high-density intra-cortical implants. IEEE Trans. Circ. Syst. I Regul. Pap. 54(6), 1266–1278 (2007). https://doi.org/10.1109/TCSI.2007.897726

    Article  Google Scholar 

  27. Singla, R., Parthasarathy, H., Agarwal, V., et al.: Nonlinear Dyn 86, 559 (2016). https://doi.org/10.1007/s11071-016-2908-9

    Article  Google Scholar 

  28. Rana, R., Agarwal, V., Gaur, P., Parthasarathy, H.: Design of optimal UKF state observer-controller for stochastic dynamical systems. IEEE Trans. Ind. Appl. (2020). https://doi.org/10.1109/TIA.2020.3048647

    Article  Google Scholar 

  29. Frazier, Michael W.: An Introduction to Wavelets Through Linear Algebra. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  30. Mendel, Jerry M.: Lessons in Estimation Theory for Signal Processing, Communications, and Control, 2nd edn. Pearson, London (1995)

    MATH  Google Scholar 

  31. Wilson, A.D., Schultz, J.A., Murphey, T.D.: Trajectory synthesis for fisher information maximization. IEEE Trans. Robot. 30(6), 1358–1370 (2014). https://doi.org/10.1109/TRO.2014.2345918

    Article  Google Scholar 

  32. Jia, J., Zhang, M., Li, C., et al.: Improved dynamic parameter identification method relying on proprioception for manipulators. Nonlinear Dyn. 105, 1373–1388 (2021). https://doi.org/10.1007/s11071-021-06612-y

    Article  Google Scholar 

  33. Zhang, S., Wang, S., Jing, F., et al.: Parameter estimation survey for multi-joint robot dynamic calibration case study. Sci. China Inf. Sci. 62, 202203 (2019). https://doi.org/10.1007/s11432-018-9726-3

    Article  MathSciNet  Google Scholar 

  34. Olsen, M.M., Petersen, H.G.: A new method for estimating parameters of a dynamic robot model. IEEE Trans. Robot. Autom. 17(1), 95–100 (2001). https://doi.org/10.1109/70.917088

    Article  Google Scholar 

  35. Liu, G., Li, Q., Fang, L., Han, B., Zhang, H.: A new joint friction model for parameter identification and sensor-less hand guiding in industrial robots. Ind. Robot 47(6), 847–857 (2020)

    Article  Google Scholar 

  36. Poignet, P., Gautier, M.: Comparison of weighted least squares and extended Kalman filtering methods for dynamic identification of robots. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000, vol. 4, pp. 3622–3627. https://doi.org/10.1109/ROBOT.2000.845296

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

All related data is available in the manuscript. However, the data will be made available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Recursive implementation

Appendix A Recursive implementation

To compare the RLS in time domain with RLS in wavelet domain we first recast our model as follows: The model (31) that relates measurement data to parameters can be cast in following general form

$$\begin{aligned} \xi (t) = H(t)\theta +W(t),t=1,2... \end{aligned}$$
(101)

where we denote \(\delta \theta \) by \(\theta \), \(\alpha _t+K_d\beta _t+K_p\rho _t\) by \(\xi (t)\), \(\Gamma _t\) by H(t) and W(t) is the noise. In the time domain, the LS estimate of \(\theta \) based on temporal data upto time T is

$$\begin{aligned} {\hat{\theta }}(T)&=\underset{\theta }{\arg \min }\sum _{t=1}^T\parallel \xi (t)-H(t)\theta \parallel ^2 \end{aligned}$$
(102)
$$\begin{aligned}&=\left( \sum _{t=1}^TH(t)^TH(t)\right) ^{-1}.\left( \sum _{t=1}^TH(t)^T\xi (t)\right) \end{aligned}$$
(103)

which is easily cast in time recursive form by using the relations

$$\begin{aligned}&\left( \sum _{t=1}^{T+1}TH(t)^TH(t)\right) \nonumber \\&\quad =\left( \sum _{t=1}^TH(t)^TH(t)\right) +H(T+1)^TH(T+1)\nonumber \\ \end{aligned}$$
(104)
$$\begin{aligned}&\left( \sum _{t=1}^{T+1}TH(t)^T\xi (t)\right) \nonumber \\&\quad =\left( \sum _{t=1}^TH(t)^T\xi (t)\right) \!+\!H(T+1)^T\xi (T\!+\!1)\qquad \end{aligned}$$
(105)

and making use of the matrix inversion lemma [30]. On the other hand, if the same is attempted using the WT, by defining

$$\begin{aligned} W_{\xi }[T,n,k]&=\sum _{t=1}^T\xi (t)\psi _{n,k}(t) \end{aligned}$$
(106)
$$\begin{aligned} W_H[T,n,k]&=\sum _{t=1}^TH(t)\psi _{n,k}(t) \end{aligned}$$
(107)

then the model will be

$$\begin{aligned} W_{\xi }[T,n,k]=W_H[T,n,k]\theta +W_W(T,n,K) \end{aligned}$$
(108)

and our LS algorithm would be

$$\begin{aligned} {\hat{\theta }}(T)= & {} \left( \sum _{n,k}W_H[T,n,k]^TW_H[T,n,k]\right) ^{-1}\nonumber \\&\times \left( \sum _{n,k}W_H[T,n,k]^TW_{\xi }[T,n,k]\right) \end{aligned}$$
(109)

which can also be cast in time recursive form using

$$\begin{aligned} W_H[T+1,n,k]&=W_H[T,n,k]+H(T+1)\psi _{n,k}(T+1) \end{aligned}$$
(110)
$$\begin{aligned} W_{\xi }[T+1,n,k]&=W_{\xi }[T,n,k]+\xi (T+1)\psi _{n,k}(T+1) \end{aligned}$$
(111)

The reduction in the complexity using the WT method is apparent once we note that the number of wavelet indices (nk) is much smaller than the total number of time samples. It should be noted that if the noise is not Gaussian white, then the ML algorithm in the time domain is not recursively implementable and of course not also recursively implementable in wavelet domain. In such a case, both ML in the time domain and ML in the wavelet domain must be implemented using a block processing approach and since we are using fewer wavelet coefficients then time samples, the wavelet based ML approach is far superior then time domain based ML approach. Specifically consider the model from Eq. (101) with W(t) as non-Gaussian white. Then, the ML estimate is given by

$$\begin{aligned} p(\xi (t), 1\le t\le N|\theta ) = \underset{\theta }{\max }\prod _{t=1}^{T} P_W(\xi (t)-H(t)\theta )\nonumber \\ \end{aligned}$$
(112)

and we have to solve the following, which is not implementable recursively

$$\begin{aligned} \frac{\partial }{\partial \theta }\sum _{t=1}^{T}\log P_W(\xi (t)-H(t)\theta )=0 \end{aligned}$$
(113)

Now for the Wavelet domain we can write Eq. (10) as

$$\begin{aligned} W_\xi (n,k)= W_H(n,k)\theta + W_W(n,k) \end{aligned}$$
(114)

and the ML estimate is given by

$$\begin{aligned} \underset{\theta }{\max }\prod _{n,k}^{}P_{wW}(W_\xi -W_H(n,k|\theta )) \end{aligned}$$
(115)

Equation (115) is not implementable recursively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Gaur, P., Agarwal, V. et al. Parameter estimation, data compression and stochastic noise elimination in robotics: a wavelet domain-based integrated approach. Nonlinear Dyn 107, 2633–2655 (2022). https://doi.org/10.1007/s11071-021-07141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07141-4

Keywords

Navigation