Skip to main content
Log in

Dynamic analysis of a multi-disk rod fastening rotor system with rub-impact based on multiple parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A dynamic modeling method for multi-disk rod fastening rotor system with rub-impact is proposed based on the structural characteristics of gas turbine and the rub-impact fault features. The comprehensive interaction of multiple parameters on the multi-disk rod fastening rotor system is disclosed in the dynamic model, where multiple parameters include oil-film support, stator stiffness, static clearance, eccentricity, radial clearance of sliding bearing and contact effect between disks. Dynamic responses of the multi-disk rod fastening rotor system with rub-impact are derived by numerical simulation. The influence trend of system parameters on the nonlinear behaviors of the rotor system is analyzed according to time-domain, frequency spectra, whirl orbit, Poincaré map and bifurcation diagram under different system parameters. The results show that system parameters have significant influences on the nonlinear behaviors and dynamic characteristics of multi-disk rod fastening rotor system. Diversified nonlinear phenomena are presented in the rod fastening rotor system under different system parameters, such as P1 motion, P2 motion, P3 motion and quasi-periodic motion. Each nonlinear behavior of the rotor system shows regular diversities with the change of system parameters. The modeling method and numerical results contribute to the identification of dynamic characteristics and the fault diagnosis of the rotor system in gas turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

The data sets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang, S., Wang, Y., Zi, Y., He, Z.: A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems. J. Sound Vib. 359, 116–135 (2015)

    Article  Google Scholar 

  2. Briend, Y., Dakel, M., Chatelet, E., Andrianoely, M., Dufour, R., Baudin, S.: Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems. Mech. Mach. Theory. 145, 103660 (2020)

    Article  Google Scholar 

  3. Varney, P., Green, I.: Rotor dynamic analysis using the complex transfer matrix: an application to elastomer supports using the viscoelastic correspondence principle. J. Sound Vib. 333(23), 6258–6272 (2014)

    Article  Google Scholar 

  4. Fu, C., Ren, X., Yang, Y., Xia, Y., Deng, W.: An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty. Mech. Syst. Signal Process. 107, 137–148 (2018)

    Article  Google Scholar 

  5. Al-Solihat, M.K., Behdinan, K.: Nonlinear dynamic response and transmissibility of a flexible rotor system mounted on viscoelastic elements. Nonlinear Dyn. 97(2), 1581–1600 (2019)

    Article  Google Scholar 

  6. Jin, Y., Lu, K., Huang, C., Hou, L., Chen, Y.: Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method. Appl. Math. Model. 75, 553–571 (2019)

    Article  MathSciNet  Google Scholar 

  7. Tirwari, M., Gupta, K.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Article  Google Scholar 

  8. Shad, M.R., Michon, G., Berlioz, A.: Modeling and analysis of nonlinear rotor dynamics due to higher order deformations in bending. Appl. Math. Model. 35(5), 2145–2159 (2011)

    Article  MathSciNet  Google Scholar 

  9. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kong, X., Sun, W., Wang, B., Wen, B.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 346, 265–283 (2015)

    Article  Google Scholar 

  11. Navazi, H.M., Hojjati, M.: Nonlinear vibrations and stability analysis of a rotor on high-static-low-dynamic-stiffness supports using method of multiple scales. Aerosp. Sci. Technol. 63, 259–265 (2017)

    Article  Google Scholar 

  12. Acar, G.D., Acar, M.A., Feeny, B.F.: Parametric resonances of a three-blade-rotor system with reference to wind turbines. J. Vib. Acoust. 142(2), 021013–021013 (2020)

    Article  Google Scholar 

  13. Jahangiri, M., Asghari, M., Bagheri, E.: Torsional vibration induced by gyroscopic effect in the modified couple stress based micro-rotors. Eur. J. Mech. A-Solid. 81, 103907 (2020)

    Article  MathSciNet  Google Scholar 

  14. Cao, J., Xue, S., Lin, J., Chen, Y.: Nonlinear dynamic analysis of a cracked rotor-bearing system with fractional order damping. J. Comput. Nonlin. Dyn. 8(3), 14 (2011)

    Google Scholar 

  15. Nataraj, C., Harsha, S.P.: The effect of bearing cage run-out on the nonlinear dynamics of a rotating shaft. Commun. Nonlinear Sci. 13(4), 822–838 (2008)

    Article  Google Scholar 

  16. Varney, P., Green, I.: Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor-stator contact system. J. Sound Vib. 336, 207–226 (2015)

    Article  Google Scholar 

  17. Zhang, Y., Hei, D., Lü, Y., Wang, Q., Müller, N.: Bifurcation and chaos analysis of nonlinear rotor system with axial-grooved gas-lubricated journal bearing support. Chin. J. Mech. Eng-en. 27(2), 358–368 (2014)

    Article  Google Scholar 

  18. Meybodi, R.R., Mohammadi, A.K., Bakhtiari-Nejad, F.: Numerical analysis of a rigid rotor supported by aerodynamic four-lobe journal bearing system with mass unbalance. Commun. Nonlinear Sci. 17(1), 454–471 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hei, D., Lu, Y., Zhang, Y., Lu, Z., Gupta, P., Müller, N.: Nonlinear dynamic behaviors of a rod fastening rotor supported by fixed–tilting pad journal bearings. Chaos Soliton. Fract. 69, 129–150 (2014)

    Article  Google Scholar 

  20. Al-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis. J. Sound Vib. 330(3), 526–544 (2015)

    Article  Google Scholar 

  21. Wang, L., Wang, A., Jin, M., Huang, Q., Yin, Y.: Nonlinear effects of induced unbalance in the rod fastening rotor-bearing system considering nonlinear contact. Arch. Appl. Mech. 90(5), 917–943 (2020)

    Article  Google Scholar 

  22. Zheng, J., Pan, H., Yang, S., Cheng, J.: Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis. Signal Process. 130, 305–314 (2017)

    Article  Google Scholar 

  23. Yang, Y., Cao, D., Yu, T., Wang, D., Li, C.: Prediction of dynamic characteristics of a dual-rotor system with fixed point rubbing- Theoretical analysis and experimental study. Int. J. Mech. Sci. 115–116, 253–261 (2016)

    Article  Google Scholar 

  24. Xiang, L., Zhang, Y., Hu, A.: Crack characteristic analysis of multi-fault rotor system based on whirl orbits. Nonlinear Dyn. 95(4), 2675–2690 (2019)

    Article  Google Scholar 

  25. Xiang, L., Zhang, Y., Hu, A., Ye, F.: Dynamic analysis and experiment investigation of a cracked dual-disc bearing-rotor system based on orbit morphological characteristics. Appl. Math. Model. 80, 17–32 (2020)

    Article  MathSciNet  Google Scholar 

  26. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10(3), 251–269 (1996)

    Article  Google Scholar 

  27. Cheng, L., Qian, Z., Chen, W.: Analysis on bistable response of a disk-rod-fastening rotor. Adv. Mat. Res. 199–200(7), 983–987 (2011)

    Google Scholar 

  28. Chang-Jian, C.W., Chen, C.K.: Couple stress fluid improve rub-impact rotor-bearing system—nonlinear dynamic analysis. Appl. Math. Model. 34(7), 1763–1778 (2010)

    Article  MathSciNet  Google Scholar 

  29. Xiang, L., Gao, X., Hu, A.: Nonlinear dynamics of an asymmetric rotor-bearing system with coupling faults of crack and rub-impact under oil-film forces. Nonlinear Dyn. 86(2), 1057–1067 (2016)

    Article  Google Scholar 

  30. Hu, L., Liu, Y., Zhao, L.: Nonlinear dynamic response of a rub-impact rod fastening rotor considering nonlinear contact characteristic. Arch. Appl. Mech. 86(11), 1869–1886 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is funded by the National Natural Science Foundation of China (No. 52075170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$ {\mathbf{\ddot{q}}} = [\begin{array}{*{20}c} {\ddot{x}_{1} } & {\ddot{y}_{1} } & {\ddot{x}_{2} } & {\ddot{y}_{2} } & {\ddot{x}_{3} } & {\ddot{y}_{3} } & {\ddot{x}_{4} } & {\ddot{y}_{4} } & {\ddot{x}_{5} } & {\ddot{y}_{5} } & {\ddot{x}_{6} } & {\ddot{y}_{6} } \\ \end{array} ] $$
$$ {\dot{\mathbf{q}}} = [\begin{array}{*{20}c} {\dot{x}_{1} } & {\dot{y}_{1} } & {\dot{x}_{2} } & {\dot{y}_{2} } & {\dot{x}_{3} } & {\dot{y}_{3} } & {\dot{x}_{4} } & {\dot{y}_{4} } & {\dot{x}_{5} } & {\dot{y}_{5} } & {\dot{x}_{6} } & {\dot{y}_{6} } \\ \end{array} ] $$
$$ {\mathbf{q}} = [\begin{array}{*{20}c} {x_{1} } & {y_{1} } & {x_{2} } & {y_{2} } & {x_{3} } & {y_{3} } & {x_{4} } & {y_{4} } & {x_{5} } & {y_{5} } & {x_{6} } & {y_{6} } \\ \end{array} ] $$
$$ {\mathbf{\ddot{Q}}} = [\begin{array}{*{20}c} {\ddot{X}_{1} } & {\ddot{Y}_{1} } & {\ddot{X}_{2} } & {\ddot{Y}_{2} } & {\ddot{X}_{3} } & {\ddot{Y}_{3} } & {\ddot{X}_{4} } & {\ddot{Y}_{4} } & {\ddot{X}_{5} } & {\ddot{Y}_{5} } & {\ddot{X}_{6} } & {\ddot{Y}_{6} } \\ \end{array} ] $$
$$ {\dot{\mathbf{Q}}} = [\begin{array}{*{20}c} {\dot{X}_{1} } & {\dot{Y}_{1} } & {\dot{X}_{2} } & {\dot{Y}_{2} } & {\dot{X}_{3} } & {\dot{Y}_{3} } & {\dot{X}_{4} } & {\dot{Y}_{4} } & {\dot{X}_{5} } & {\dot{Y}_{5} } & {\dot{X}_{6} } & {\dot{Y}_{6} } \\ \end{array} ] $$
$$ {\mathbf{Q}} = [\begin{array}{*{20}c} {X_{1} } & {Y_{1} } & {X_{2} } & {Y_{2} } & {X_{3} } & {Y_{3} } & {X_{4} } & {Y_{4} } & {X_{5} } & {Y_{5} } & {X_{6} } & {Y_{6} } \\ \end{array} ] $$
$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {m_{1} } & {} & {} \\ {} & {m_{1} } & {} \\ {} & {} & {m_{2} } \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {m_{2} } & {} & {} \\ {} & {m_{3} } & {} \\ {} & {} & {m_{3} } \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {m_{4} } & {} & {} \\ {} & {m_{4} } & {} \\ {} & {} & {m_{5} } \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {m_{5} } & {} & {} \\ {} & {m_{6} } & {} \\ {} & {} & {m_{6} } \\ \end{array} } \\ \end{array} } \right] $$
$$ {\mathbf{C}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {c_{1} } & {} & {} \\ {} & {c_{1} } & {} \\ {} & {} & {c_{2} + c_{3} } \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & { - c_{3} } & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & { - c_{3} } \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {c_{2} + c_{3} } & {} & { - c_{3} } \\ {} & {c_{2} + c_{3} } & {} \\ { - c_{3} } & {} & {c_{2} + c_{3} } \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {c_{2} + c_{3} } & {} & { - c_{3} } \\ {} & {c_{2} + c_{3} } & {} \\ { - c_{3} } & {} & {c_{2} + c_{3} } \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ { - c_{3} } & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & { - c_{3} } & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {c_{2} + c_{3} } & {} & {} \\ {} & {c_{1} } & {} \\ {} & {} & {c_{1} } \\ \end{array} } \\ \end{array} } \right] $$
$$ {\mathbf{K}} = k\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 & {} & { - 1} \\ {} & 1 & {} \\ { - 1} & {} & 2 \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ { - 1} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ { - 1} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & { - 1} & {} \\ { - 1} & {} & {} \\ {} & { - 1} & {} \\ \end{array} } & {\begin{array}{*{20}c} 2 & {} & {} \\ {} & 2 & {} \\ {} & {} & 2 \\ \end{array} } & {\begin{array}{*{20}c} {} & { - 1} & {} \\ { - 1} & {} & {} \\ {} & { - 1} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & { - 1} & {} \\ {} & {} & { - 1} \\ {} & { - 1} & {} \\ \end{array} } & {\begin{array}{*{20}c} 2 & {} & {} \\ {} & 2 & {} \\ {} & {} & 2 \\ \end{array} } & {\begin{array}{*{20}c} {} & { - 1} & {} \\ {} & {} & { - 1} \\ {} & { - 1} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & { - 1} \\ {} & {} & {} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {} & {} & {} \\ {} & {} & { - 1} \\ {} & {} & {} \\ \end{array} } & {\begin{array}{*{20}c} 2 & {} & { - 1} \\ {} & 1 & {} \\ { - 1} & {} & 1 \\ \end{array} } \\ \end{array} } \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, S., Xiang, L. et al. Dynamic analysis of a multi-disk rod fastening rotor system with rub-impact based on multiple parameters. Nonlinear Dyn 107, 2133–2152 (2022). https://doi.org/10.1007/s11071-021-07122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07122-7

Keywords

Navigation