Skip to main content
Log in

A review of predator–prey systems with dormancy of predators

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The predator–prey system has received much attention in the field of ecology and evolution. The interaction and competition between populations in nature can be described by the predator–prey system. Under large-amplitude fluctuations caused by harsh environmental conditions, the dormant progeny has been found as an effective strategy to prevent extinction. In this review paper, recent developments of dormancy in predator–prey systems are reviewed. The significant impacts of dormancy on the competition and evolution in predator–prey systems are then discussed through different models. The connections between dormancy in predator–prey systems and the game-theoretic Parrondo’s paradox are also discussed: the dormitive predator with inferior traits can outcompete the perennially active predator by switching between two losing strategies. Future outlook about the dormancy research in predator–prey systems is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Beddington, J., Free, C., Lawton, J.: Dynamic complexity in predator-prey models framed in difference equations. Nature 255, 58–60 (1975)

    Article  Google Scholar 

  2. Hiernaux, J. R. et al.: Tumor dormancy as a result of simple competition between tumor cells and cytolytic effector cells. In Paradoxes in immunology, pp. 95–110, CRC Press, (2019)

  3. Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  4. Orth, R.J., Heck, K.L., van Montfrans, J.: Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350 (1984)

    Article  Google Scholar 

  5. Sun, G.-Q. et al. Mathematical modeling and mechanisms of pattern formation in ecological systems: a review. Nonlinear Dyn. 1–20 (2021)

  6. Briggs, C.J., Hoopes, M.F.: Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor. Popul. Biol. 65, 299–315 (2004)

    Article  MATH  Google Scholar 

  7. Wilkie, K. P.: A review of mathematical models of cancer-immune interactions in the context of tumor dormancy. Syst. Biol. tumor Dormancy, 201–234 (2013)

  8. Kaur, G. & Ahmad, N.: On study of immune response to tumor cells in prey-predator system. International scholarly research notices, 2014 (2014)

  9. Chivers, D.P., Smith, R.J.F.: Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5, 338–352 (1998)

    Article  Google Scholar 

  10. Silva, J.G., Ribeiro, A.C., Camargo, R.F., Mancera, P.F., Santos, F.L.: Stability analysis and numerical simulations via fractional calculus for tumor dormancy models. Commun. Nonlinear Sci. Num. Simul. 72, 528–543 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahms, H.-U.: Dormancy in the copepoda-an overview. Hydrobiologia 306, 199–211 (1995)

    Article  Google Scholar 

  12. Ryall, K.L., Fahrig, L.: Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87, 1086–1093 (2006)

    Article  Google Scholar 

  13. Carroll, G., et al.: A review of methods for quantifying spatial predator-prey overlap. Glob. Ecol. Biogeogr. 28, 1561–1577 (2019)

    Article  Google Scholar 

  14. Dyer, L.A., Letourneau, D.K.: Trophic cascades in a complex terrestrial community. Proc. Natl. Acad. Sci. 96, 5072–5076 (1999)

    Article  Google Scholar 

  15. Hunter, M.D., Price, P.W.: Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992)

    Article  Google Scholar 

  16. Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control, and competition. The Am. Nat. 94, 421–425 (1960)

    Article  Google Scholar 

  17. Blasius, B., Rudolf, L., Weithoff, G., Gaedke, U., Fussmann, G.F.: Long-term cyclic persistence in an experimental predator-prey system. Nature 577, 226–230 (2020)

    Article  Google Scholar 

  18. Thakur, N.K., Gupta, R., Upadhyay, R.K.: Complex dynamics of diffusive predator-prey system with beddington-deangelis functional response: the role of prey-taxis. Asian-Eur. J. Math. 10, 1750047 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, M.: Dynamics of a stochastic regime-switching predator-prey model with modified leslie-gower holling-type ii schemes and prey harvesting. Nonlinear Dyn. 96, 417–442 (2019)

    Article  MATH  Google Scholar 

  20. Hastings, A.: Long-term predator–prey cycles finally achieved in the lab (2020)

  21. Krebs, C.J., et al.: Impact of food and predation on the snowshoe hare cycle. Science 269, 1112–1115 (1995)

    Article  Google Scholar 

  22. Krebs, C.J., Boonstra, R., Boutin, S., Sinclair, A.R.: What drives the 10-year cycle of snowshoe hares? the ten-year cycle of snowshoe hares-one of the most striking features of the boreal forest-is a product of the interaction between predation and food supplies, as large-scale experiments in the yukon have demonstrated. BioScience 51, 25–35 (2001)

    Article  Google Scholar 

  23. Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. 6, 410–415 (1920)

    Article  Google Scholar 

  24. Lotka, A.J.: Elements of physical biology. Williams & Wilkins, Philadelphia (1925)

    MATH  Google Scholar 

  25. Lotka, A.J.: Contribution to the theory of periodic reactions. The J. Phys. Chem. 14, 271–274 (2002)

    Article  Google Scholar 

  26. Simin, P.T., et al.: Dynamical phase diagrams of a love capacity constrained prey-predator model. The Eur. Phys. J. B 91, 1–18 (2018)

    Article  MathSciNet  Google Scholar 

  27. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. The Am. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  28. Thakur, N.: Turing and non-turing patterns in diffusive plankton model. Comput. Ecol. Softw. 5, 16 (2015)

    Google Scholar 

  29. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1. The Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  30. Rihan, F., Lakshmanan, S., Hashish, A., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed predator-prey systems with holling type-ii functional response. Nonlinear Dyn. 80, 777–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Holling, C.S.: The functional response of invertebrate predators to prey density. The Memoirs of the Entomological Society of Canada 98, 5–86 (1966)

  32. Mondal, S. & Samanta, G.: Impact of fear on a predator–prey system with prey-dependent search rate in deterministic and stochastic environment. Nonlinear Dyn. 1–29 (2021)

  33. Chinnathambi, R., Rihan, F.A.: Stability of fractional-order prey-predator system with time-delay and monod-haldane functional response. Nonlinear Dyn. 92, 1637–1648 (2018)

    Article  MATH  Google Scholar 

  34. Kooij, R.E., Zegeling, A.: Predator-prey models with non-analytical functional response. Chaos Solit. Fract. 123, 163–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ren, J., Yu, L., Siegmund, S.: Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response. Nonlinear Dyn. 90, 19–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pearl, R., Reed, L.J.: On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Natl. Acad. Sci. USA 6, 275 (1920)

    Article  Google Scholar 

  37. Ripple, W.J., Beschta, R.L.: Wolves and the ecology of fear: Can predation risk structure ecosystems? BioScience 54, 755–766 (2004)

    Article  Google Scholar 

  38. Tripathi, J.P., Jana, D., Devi, N.V., Tiwari, V., Abbas, S.: Intraspecific competition of predator for prey with variable rates in protected areas. Nonlinear Dyn. 102, 511–535 (2020)

    Article  Google Scholar 

  39. Sinclair, A., Mduma, S., Brashares, J.S.: Patterns of predation in a diverse predator-prey system. Nature 425, 288–290 (2003)

    Article  Google Scholar 

  40. Wang, B., Zhu, J. & Wei, D.: The self-similarity of complex networks: from the view of degree–degree distance. Mod. Phys. Lett. B, 2150331 (2021)

  41. Wen, T., Deng, Y.: The vulnerability of communities in complex networks: an entropy approach. Reliab. Eng. Syst. Saf. 196, 106782 (2020)

    Article  Google Scholar 

  42. Xiao, F., Cao, Z., Jolfaei, A.: A novel conflict measurement in decision-making and its application in fault diagnosis. IEEE Trans. Fuzzy Syst. 29, 186–197 (2020)

    Article  Google Scholar 

  43. Wang, Y., Jiang, W., Wang, H.: Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting. Nonlinear Dyn. 73, 881–896 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tiwari, P.K., Al Amri, K.A.N., Samanta, S., Khan, Q.J.A., Chattopadhyay, J.: A systematic study of autonomous and nonautonomous predator-prey models with combined effects of fear, migration and switching. Nonlinear Dyn. 103, 2125–2162 (2021)

    Article  Google Scholar 

  45. Scherer, A.E., Smee, D.L.: A review of predator diet effects on prey defensive responses. Chemoecology 26, 83–100 (2016)

    Article  Google Scholar 

  46. Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  47. El-Saka, H., Lee, S., Jang, B.: Dynamic analysis of fractional-order predator-prey biological economic system with holling type ii functional response. Nonlinear Dyn. 96, 407–416 (2019)

    Article  MATH  Google Scholar 

  48. Dubey, B., Kumar, A.: Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays. Nonlinear Dyn. 96, 2653–2679 (2019)

    Article  MATH  Google Scholar 

  49. Bhattacharyya, J., Piiroinen, P. T. & Banerjee, S.: Dynamics of a Filippov predator-prey system with stage-specific intermittent harvesting. Nonlinear Dyn. 1–25 (2021)

  50. Yang, J., Yuan, S., Zhang, T.: Complex dynamics of a predator-prey system with herd and schooling behavior: with or without delay and diffusion. Nonlinear Dyn. 104, 1709–1735 (2021)

    Article  Google Scholar 

  51. Biswas, S., et al.: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dyn. 87, 1553–1573 (2017)

    Article  MATH  Google Scholar 

  52. Kermack, W.O., McKendrick, A.G., Walker, G.T.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115, 700–721 (1927)

  53. Lo, W.-C., Zheng, L., Nie, Q.: A hybrid continuous-discrete method for stochastic reaction-diffusion processes. Royal Soc. open Sci. 3, 160485 (2016)

    Article  MathSciNet  Google Scholar 

  54. Ye, M., Liu, J., Anderson, B.D.: & Cao, M.: Epidemic models and Lotka-Volterra systems. IEEE Transactions on Automatic Control, Applications of the Poincare-Hopf Theorem (2021)

  55. Lo, W.-C., Mao, S.: A hybrid stochastic method with adaptive time step control for reaction-diffusion systems. J. Comput. Phys. 379, 392–402 (2019)

    Article  MathSciNet  Google Scholar 

  56. Venturino, E.: The influence of diseases on Lotka-Volterra systems. The Rocky Mt. J. Math. 381–402 (1994)

  57. Wollkind, D. J., Hastings, A. & Logan, J. A.: Models involving differential and integral equations appropriate for describing a temperature dependent predator-prey mite ecosystem on apples. In Modeling and differential equations in biology, 255–277 (Routledge, 2017)

  58. Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching levenberg-marquardt algorithms. J. Electr. Spectrosc. Relat. Phenom. 227, 31–39 (2018)

    Article  Google Scholar 

  59. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi (1926)

  60. Saakian, D.B., Koonin, E.V., Cheong, K.H.: Key role of recombination in evolutionary processes with migration between two habitats. Phys. Rev. E 100, 030401 (2019)

    Article  Google Scholar 

  61. Thakur, N.K., Ojha, A., Tiwari, P.K., Upadhyay, R.K.: An investigation of delay induced stability transition in nutrient-plankton systems. Chaos Solit. Fract. 142, 110474 (2021)

    Article  MathSciNet  Google Scholar 

  62. Chen, X., Jiang, W., Ruan, S.: Global dynamics and complex patterns in Lotka-Volterra systems: the effects of both local and nonlocal intraspecific and interspecific competitions. J. Math. Anal. Appl. 499, 125015 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  63. Gatabazi, P., Mba, J., Pindza, E., Labuschagne, C.: Grey Lotka-Volterra models with application to cryptocurrencies adoption. Chaos Solit. Fract. 122, 47–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gatabazi, P., Mba, J., Pindza, E.: Modeling cryptocurrencies transaction counts using variable-order Fractional Grey Lotka-Volterra dynamical system. Chaos Solit. Fract. 127, 283–290 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. Danks, H. V. et al.: Insect dormancy: an ecological perspective, vol. 1 (Biological Survey of Canada (Terrestrial Artropods) Ottawa, 1987)

  66. Gyllström, M., Hansson, L.-A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295 (2004)

    Article  Google Scholar 

  67. Dáger, R., Navarro, V., Negreanu, M.: Uniform boundedness for a predator-prey system with chemotaxis and dormancy of predators. Quart. Appl. Math. 79, 367–382 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  68. Horvitz, C.C., Schemske, D.W.: Effects of dispersers, gaps, and predators on dormancy and seedling emergence in a tropical herb. Ecology 75, 1949–1958 (1994)

    Article  Google Scholar 

  69. Jones, S.E., Lennon, J.T.: Dormancy contributes to the maintenance of microbial diversity. Proc.e Natl. Acad. Sci. 107, 5881–5886 (2010)

    Article  Google Scholar 

  70. Alekseev, V., Lampert, W.: Maternal control of resting-egg production in Daphnia. Nature 414, 899–901 (2001)

    Article  Google Scholar 

  71. Lubzens, E., Cerda, J., Clark, M.: Dormancy and resistance in harsh environments, vol. 21. Springer, New York (2010)

    Book  Google Scholar 

  72. Paulsen, T.R., et al.: Physical dormancy in seeds: A game of hide and seek? New Phytol. 198, 496–503 (2013)

    Article  Google Scholar 

  73. Lalonde, R., Roitberg, B.: Chaotic dynamics can select for long-term dormancy. The Am. Nat. 168, 127–131 (2006)

    Article  Google Scholar 

  74. Paulsen, T.R., Högstedt, G., Thompson, K., Vandvik, V., Eliassen, S.: Conditions favouring hard seededness as a dispersal and predator escape strategy. J. Ecol. 102, 1475–1484 (2014)

    Article  Google Scholar 

  75. Bradbeer, J.: Seed dormancy and germination. Springer, New York (2013)

    Google Scholar 

  76. Ricci, C.: Dormancy patterns in rotifers. Hydrobiologia 446, 1–11 (2001)

    Article  Google Scholar 

  77. Brendonck, L., Pinceel, T., Ortells, R.: Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia 796, 201–222 (2017)

    Article  Google Scholar 

  78. Freire, J.G., Gallas, M.R., Gallas, J.A.: Impact of predator dormancy on prey-predator dynamics. Chaos An Interdis. J. Nonlinear Sci. 28, 053118 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  79. Waterkeyn, A., Vanoverbeke, J., Van Pottelbergh, N., Brendonck, L.: While they were sleeping: dormant egg predation by Triops. J. Plankton Res. 33, 1617–1621 (2011)

    Article  Google Scholar 

  80. Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Num. Simul. 10, 681–691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  81. Freire, J. G., Gallas, M. R. & Gallas, J. A.: Nonchaos-mediated mixed-mode oscillations in a prey-predator model with predator dormancy. In Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, 101–114 (Springer, 2018)

  82. Wang, J., Jiang, W.: Hopf-zero bifurcation of a delayed predator-prey model with dormancy of predators. J. Appl. Anal. Comput. 7, 1051–1069 (2017)

    MathSciNet  MATH  Google Scholar 

  83. Thakur, N.K., Ojha, A., Jana, D., Upadhyay, R.K.: Modeling the plankton-fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dyn. 100, 4003–4029 (2020)

    Article  Google Scholar 

  84. Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos An Interdis. J. Nonlinear Sci. 19, 043121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  85. Wen, T., Cheong, K.H.: The fractal dimension of complex networks: a review. Inform. Fus. 73, 87–102 (2021)

    Article  Google Scholar 

  86. Dáger, R., Navarro, V., Negreanu, M.: Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis. Comptes Rendus. Mathé. 358, 103–108 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  87. Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator-prey model with dormancy of predators. Nonlinear Dyn. 69, 1541–1558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. McCauley, E., Nisbet, R.M., Murdoch, W.W., de Roos, A.M., Gurney, W.S.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999)

    Article  Google Scholar 

  89. Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  90. Kuwamura, M., Nakazawa, T.: Dormancy of predators dependent on the rate of variation in prey density. SIAM J. Appl. Math. 71, 169–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  91. Wang, J., Jiang, W.: Impulsive perturbations in a predator-prey model with dormancy of predators. Appl. Math. Modell. 38, 2533–2542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zegeling, A., Kooij, R.E.: Singular perturbations of the holling i predator-prey system with a focus. J. Diff. Equ. 269, 5434–5462 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  93. Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  94. Tan, Z.-X., Koh, J.M., Koonin, E.V., Cheong, K.H.: Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7, 1901559 (2020)

    Article  Google Scholar 

  95. Soo, W.W.M., Cheong, K.H.: Occurrence of complementary processes in Parrondo’s paradox. Physica A Stat. Mech. Appl. 412, 180–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  96. Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the Parrondo effect across biology. BioEssays 41, 1900027 (2019)

    Article  Google Scholar 

  97. Harmer, G.P., Abbott, D.: Losing strategies can win by parrondo’s paradox. Nature 402, 864–864 (1999)

    Article  Google Scholar 

  98. Cheong, K.H., Soo, W.W.M.: Construction of novel stochastic matrices for analysis of Parrondo’s paradox. Physica A Stat. Mech. Appl. 392, 4727–4738 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  99. Soo, W.W.M., Cheong, K.H.: Parrondo’s paradox and complementary Parrondo processes. Physica A Stat. Mech. Appl. 392, 17–26 (2013)

    Article  MathSciNet  Google Scholar 

  100. Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  101. Lai, J. W. & Cheong, K. H.: Social dynamics and Parrondo’s paradox: a narrative review. Nonlinear Dyn. 1–20 (2020)

  102. Rousselet, J., Salome, L., Ajdari, A., Prostt, J.: Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–447 (1994)

    Article  Google Scholar 

  103. Lai, J.W., Cheong, K.H.: Parrondo’s paradox from classical to quantum: a review. Nonlinear Dyn. 100, 849–861 (2020)

    Article  MATH  Google Scholar 

  104. Lai, J.W., Chang, J., Ang, L., Cheong, K.H.: Multi-level information fusion to alleviate network congestion. Inform. Fus. 63, 248–255 (2020)

    Article  Google Scholar 

  105. Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. Elife 6, e21673 (2017)

    Article  Google Scholar 

  106. Ye, Y., et al.: Ratcheting based on neighboring niches determines lifestyle. Nonlinear Dyn. 98, 1821–1830 (2019)

    Article  MATH  Google Scholar 

  107. Cheong, K.H., Tan, Z.X., Ling, Y.H.: A time-based switching scheme for nomadic-colonial alternation under noisy conditions. Commun. Nonlinear Sci. Num. Simul. 60, 107–114 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  108. Koh, J.M., Xie, N.-G., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467–1477 (2018)

    Article  Google Scholar 

  109. Cheong, K.H., Wen, T., Lai, J.W.: Relieving cost of epidemic by Parrondo’s paradox: a covid-19 case study. Adv. Sci. 7, 2002324 (2020)

    Article  Google Scholar 

  110. Tan, Z.-X., Cheong, K.H.: Periodic habitat destruction and migration can paradoxically enable sustainable territorial expansion. Nonlinear Dyn. 98, 1–13 (2019)

    Article  MATH  Google Scholar 

  111. Cheong, K. H., Wen, T., Benler, S. & Koonin, E. V.: Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo’s paradox. bioRxiv (2021)

  112. Wen, T., Koonin, E.V., Cheong, K.H.: An alternating active-dormitive strategy enables disadvantaged prey to outcompete the perennially active prey through parrondo’s paradox. BMC Biol. 19, 168 (2021)

    Article  Google Scholar 

  113. Geiser, F., Turbill, C.: Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96, 1235–1240 (2009)

    Article  Google Scholar 

  114. Jiao, J., Cai, S., Chen, L.: Dynamics of a plankton-nutrient chemostat model with hibernation and it described by impulsive switched systems. J. Appl. Math. Comput. 53, 583–598 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  115. Kobbe, S., Dausmann, K.H.: Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 96, 1221–1227 (2009)

    Article  Google Scholar 

  116. Leck, M.A.: Ecology of soil seed banks. Elsevier, Amsterdam (2012)

    Google Scholar 

  117. Lennon, J.T., Jones, S.E.: Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Rev. Microbiol. 9, 119–130 (2011)

    Article  Google Scholar 

  118. Begon, M., Harper, J.L., Townsend, C.R., et al.: Ecology. Individuals, populations and communities. Blackwell scientific publications, Hoboken (1986)

    Google Scholar 

  119. Berryman, A.A.: The orgins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992)

    Article  Google Scholar 

  120. Lin, X., Weng, P., Wu, C.: Traveling wave solutions for a predator-prey system with sigmoidal response function. J. Dyn. Diff. Equ. 23, 903–921 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  121. Kuwamura, M.: Stability of coexisting equilibrium of prey-predator systems with dormancy of predators. Funkcialaj Ekvacioj 57, 339–350 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  122. Hairston, N.G., Jr., Van Brunt, R.A., Kearns, C.M., Engstrom, D.R.: Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76, 1706–1711 (1995)

    Article  Google Scholar 

  123. Genkai Kato, M., Yamamura, N.: Unpalatable prey resolves the paradox of enrichment. Proc. Royal Soc. London Ser. B Biol. Sci. 266, 1215–1219 (1999)

    Article  Google Scholar 

  124. Genkai-Kato, M., Yamamura, N.: Profitability of prey determines the response of population abundances to enrichment. Proc. Royal Soc. London Ser. B Biol. Sci. 267, 2397–2401 (2000)

    Article  Google Scholar 

  125. Scheffer, M., De Boer, R.J.: Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76, 2270–2277 (1995)

    Article  Google Scholar 

  126. Vos, M., Kooi, B.W., DeAngelis, D.L., Mooij, W.M.: Inducible defences and the paradox of enrichment. Oikos 105, 471–480 (2004)

    Article  Google Scholar 

  127. Nakazawa, T., Kuwamura, M., Yamamura, N.: Implications of resting eggs of zooplankton for the paradox of enrichment. Popul. Ecol. 53, 341–350 (2011)

    Article  Google Scholar 

  128. Arbačiauskas, K. & Lampert, W.: Seasonal adaptation of ex-ephippio and parthenogenetic offspring of daphnia magna: differences in life history and physiology. Funct. Ecol. 431–437 (2003)

  129. Scheffer, M., Rinaldi, S., Kuznetsov, Y. A. & van Nes, E. H. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 519–532 (1997)

  130. Takimoto, G., Iwata, T., Murakami, M.: Seasonal subsidy stabilizes food web dynamics: balance in a heterogeneous landscape. Ecol. Res. 17, 433–439 (2002)

    Article  Google Scholar 

  131. Hairston, N.G., Jr., Hansen, A.-M., Schaffner, W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45, 133–145 (2000)

    Article  Google Scholar 

  132. Qi An, W.J.: Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discr. Contin. Dyn. Syst. B 24, 487–510 (2019)

    MathSciNet  MATH  Google Scholar 

  133. Novrianti, N., Sawada, O. & Tsuge, N.: Nonnegative solutions to the reaction-diffusion equations for prey-predator models with the dormancy of predators. Authorea Preprints (2021)

  134. Cross, G.: Three types of matrix stability. Linear Algebra Appl. 20, 253–263 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  135. Chakraborty, K., Manthena, V.: Modelling and analysis of spatio-temporal dynamics of a marine ecosystem. Nonlinear Dyn. 81, 1895–1906 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  136. Novrianti, Sawada, O., Tsuge, N.: Positive solutions to the reaction diffusion equations for prey-predator models with dormancy of predators (2019). https://arxiv.org/abs/1908.11050

  137. Thakur, N. K., Ojha, A. & Tiwari, S.: The role of adaptation in plankton system with beddington-deangelis type functional response. In: International Conference on Mathematical Modelling and Scientific Computation, 21–33 (Springer, 2018)

  138. Thakur, N.K., Ojha, A.: Complex plankton dynamics induced by adaptation and defense. Model. Earth Syst. Environ. 6, 907–916 (2020)

    Article  Google Scholar 

  139. Thakur, N.K., Ojha, A.: Complex dynamics of delay-induced plankton-fish interaction exhibiting defense. SN Appl. Sci. 2, 1–25 (2020)

    Article  Google Scholar 

  140. Dáger, R., Navarro, V., Negreanu, M., Vargas, A.: Uniform asymptotic behavior of numerical solutions for a predator-prey system with diffusion and chemotaxis. Eng. Anal. Bound. Elem. 120, 82–94 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  141. Helle, W., Sabelis, M.W.: Spider mites: their biology, natural enemies and control, vol. 1. Elsevier, Amsterdam (1985)

    Google Scholar 

  142. Roughgarden, J.: Theory of population genetics and evolutionary ecology: an introduction (1979)

  143. Rose, K.A., Swartzman, G.L., Kindig, A.C., Taub, F.B.: Stepwise iterative calibration of a multi-species phytoplankton-zooplankton simulation model using laboratory data. Ecol. Modell. 42, 1–32 (1988)

    Article  Google Scholar 

  144. Koh, J.M., Cheong, K.H.: New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. Nonlinear Dyn. 96, 257–266 (2019)

    Article  MATH  Google Scholar 

  145. Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 1–17 (2016)

    Article  Google Scholar 

  146. Dai, Y..y: Game dynamics of emotion evolution based on the Moran process. Chaos An Interdis. J. Nonlinear Sci. 31, 033153 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  147. Koh, J.M., Cheong, K.H.: Generalized solutions of Parrondo’s games. Adv. Sci. 7, 2001126 (2020)

    Article  Google Scholar 

  148. Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)

    Article  Google Scholar 

  149. Koh, J.M., Cheong, K.H.: Emergent preeminence of selfishness: an anomalous Parrondo perspective. Nonlinear Dyn. 98, 943–951 (2019)

    Article  Google Scholar 

  150. Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of Parrondo’s paradox. Proc. Natl. Acad. Sci. 115, E5258–E5259 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by AcRF Tier 2 Grant No. MOE-T2EP50120-0021 from Ministry of Education of Singapore. The work of T. Kalmár-Nagy is supported by the NRDI Funds (TKP2020 IES, Grant No. BME-IE-WAT; TKP2020 NC, Grant No. BME-NCS) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Deng or Kang Hao Cheong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Gao, Q., Kalmár-Nagy, T. et al. A review of predator–prey systems with dormancy of predators. Nonlinear Dyn 107, 3271–3289 (2022). https://doi.org/10.1007/s11071-021-07083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07083-x

Keywords

Navigation