Abstract
The predator–prey system has received much attention in the field of ecology and evolution. The interaction and competition between populations in nature can be described by the predator–prey system. Under large-amplitude fluctuations caused by harsh environmental conditions, the dormant progeny has been found as an effective strategy to prevent extinction. In this review paper, recent developments of dormancy in predator–prey systems are reviewed. The significant impacts of dormancy on the competition and evolution in predator–prey systems are then discussed through different models. The connections between dormancy in predator–prey systems and the game-theoretic Parrondo’s paradox are also discussed: the dormitive predator with inferior traits can outcompete the perennially active predator by switching between two losing strategies. Future outlook about the dormancy research in predator–prey systems is also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this article.
References
Beddington, J., Free, C., Lawton, J.: Dynamic complexity in predator-prey models framed in difference equations. Nature 255, 58–60 (1975)
Hiernaux, J. R. et al.: Tumor dormancy as a result of simple competition between tumor cells and cytolytic effector cells. In Paradoxes in immunology, pp. 95–110, CRC Press, (2019)
Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)
Orth, R.J., Heck, K.L., van Montfrans, J.: Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350 (1984)
Sun, G.-Q. et al. Mathematical modeling and mechanisms of pattern formation in ecological systems: a review. Nonlinear Dyn. 1–20 (2021)
Briggs, C.J., Hoopes, M.F.: Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor. Popul. Biol. 65, 299–315 (2004)
Wilkie, K. P.: A review of mathematical models of cancer-immune interactions in the context of tumor dormancy. Syst. Biol. tumor Dormancy, 201–234 (2013)
Kaur, G. & Ahmad, N.: On study of immune response to tumor cells in prey-predator system. International scholarly research notices, 2014 (2014)
Chivers, D.P., Smith, R.J.F.: Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5, 338–352 (1998)
Silva, J.G., Ribeiro, A.C., Camargo, R.F., Mancera, P.F., Santos, F.L.: Stability analysis and numerical simulations via fractional calculus for tumor dormancy models. Commun. Nonlinear Sci. Num. Simul. 72, 528–543 (2019)
Dahms, H.-U.: Dormancy in the copepoda-an overview. Hydrobiologia 306, 199–211 (1995)
Ryall, K.L., Fahrig, L.: Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87, 1086–1093 (2006)
Carroll, G., et al.: A review of methods for quantifying spatial predator-prey overlap. Glob. Ecol. Biogeogr. 28, 1561–1577 (2019)
Dyer, L.A., Letourneau, D.K.: Trophic cascades in a complex terrestrial community. Proc. Natl. Acad. Sci. 96, 5072–5076 (1999)
Hunter, M.D., Price, P.W.: Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992)
Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control, and competition. The Am. Nat. 94, 421–425 (1960)
Blasius, B., Rudolf, L., Weithoff, G., Gaedke, U., Fussmann, G.F.: Long-term cyclic persistence in an experimental predator-prey system. Nature 577, 226–230 (2020)
Thakur, N.K., Gupta, R., Upadhyay, R.K.: Complex dynamics of diffusive predator-prey system with beddington-deangelis functional response: the role of prey-taxis. Asian-Eur. J. Math. 10, 1750047 (2017)
Liu, M.: Dynamics of a stochastic regime-switching predator-prey model with modified leslie-gower holling-type ii schemes and prey harvesting. Nonlinear Dyn. 96, 417–442 (2019)
Hastings, A.: Long-term predator–prey cycles finally achieved in the lab (2020)
Krebs, C.J., et al.: Impact of food and predation on the snowshoe hare cycle. Science 269, 1112–1115 (1995)
Krebs, C.J., Boonstra, R., Boutin, S., Sinclair, A.R.: What drives the 10-year cycle of snowshoe hares? the ten-year cycle of snowshoe hares-one of the most striking features of the boreal forest-is a product of the interaction between predation and food supplies, as large-scale experiments in the yukon have demonstrated. BioScience 51, 25–35 (2001)
Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. 6, 410–415 (1920)
Lotka, A.J.: Elements of physical biology. Williams & Wilkins, Philadelphia (1925)
Lotka, A.J.: Contribution to the theory of periodic reactions. The J. Phys. Chem. 14, 271–274 (2002)
Simin, P.T., et al.: Dynamical phase diagrams of a love capacity constrained prey-predator model. The Eur. Phys. J. B 91, 1–18 (2018)
Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. The Am. Nat. 97, 209–223 (1963)
Thakur, N.: Turing and non-turing patterns in diffusive plankton model. Comput. Ecol. Softw. 5, 16 (2015)
Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1. The Can. Entomol. 91, 293–320 (1959)
Rihan, F., Lakshmanan, S., Hashish, A., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed predator-prey systems with holling type-ii functional response. Nonlinear Dyn. 80, 777–789 (2015)
Holling, C.S.: The functional response of invertebrate predators to prey density. The Memoirs of the Entomological Society of Canada 98, 5–86 (1966)
Mondal, S. & Samanta, G.: Impact of fear on a predator–prey system with prey-dependent search rate in deterministic and stochastic environment. Nonlinear Dyn. 1–29 (2021)
Chinnathambi, R., Rihan, F.A.: Stability of fractional-order prey-predator system with time-delay and monod-haldane functional response. Nonlinear Dyn. 92, 1637–1648 (2018)
Kooij, R.E., Zegeling, A.: Predator-prey models with non-analytical functional response. Chaos Solit. Fract. 123, 163–172 (2019)
Ren, J., Yu, L., Siegmund, S.: Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response. Nonlinear Dyn. 90, 19–41 (2017)
Pearl, R., Reed, L.J.: On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Natl. Acad. Sci. USA 6, 275 (1920)
Ripple, W.J., Beschta, R.L.: Wolves and the ecology of fear: Can predation risk structure ecosystems? BioScience 54, 755–766 (2004)
Tripathi, J.P., Jana, D., Devi, N.V., Tiwari, V., Abbas, S.: Intraspecific competition of predator for prey with variable rates in protected areas. Nonlinear Dyn. 102, 511–535 (2020)
Sinclair, A., Mduma, S., Brashares, J.S.: Patterns of predation in a diverse predator-prey system. Nature 425, 288–290 (2003)
Wang, B., Zhu, J. & Wei, D.: The self-similarity of complex networks: from the view of degree–degree distance. Mod. Phys. Lett. B, 2150331 (2021)
Wen, T., Deng, Y.: The vulnerability of communities in complex networks: an entropy approach. Reliab. Eng. Syst. Saf. 196, 106782 (2020)
Xiao, F., Cao, Z., Jolfaei, A.: A novel conflict measurement in decision-making and its application in fault diagnosis. IEEE Trans. Fuzzy Syst. 29, 186–197 (2020)
Wang, Y., Jiang, W., Wang, H.: Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting. Nonlinear Dyn. 73, 881–896 (2013)
Tiwari, P.K., Al Amri, K.A.N., Samanta, S., Khan, Q.J.A., Chattopadhyay, J.: A systematic study of autonomous and nonautonomous predator-prey models with combined effects of fear, migration and switching. Nonlinear Dyn. 103, 2125–2162 (2021)
Scherer, A.E., Smee, D.L.: A review of predator diet effects on prey defensive responses. Chemoecology 26, 83–100 (2016)
Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)
El-Saka, H., Lee, S., Jang, B.: Dynamic analysis of fractional-order predator-prey biological economic system with holling type ii functional response. Nonlinear Dyn. 96, 407–416 (2019)
Dubey, B., Kumar, A.: Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays. Nonlinear Dyn. 96, 2653–2679 (2019)
Bhattacharyya, J., Piiroinen, P. T. & Banerjee, S.: Dynamics of a Filippov predator-prey system with stage-specific intermittent harvesting. Nonlinear Dyn. 1–25 (2021)
Yang, J., Yuan, S., Zhang, T.: Complex dynamics of a predator-prey system with herd and schooling behavior: with or without delay and diffusion. Nonlinear Dyn. 104, 1709–1735 (2021)
Biswas, S., et al.: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dyn. 87, 1553–1573 (2017)
Kermack, W.O., McKendrick, A.G., Walker, G.T.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115, 700–721 (1927)
Lo, W.-C., Zheng, L., Nie, Q.: A hybrid continuous-discrete method for stochastic reaction-diffusion processes. Royal Soc. open Sci. 3, 160485 (2016)
Ye, M., Liu, J., Anderson, B.D.: & Cao, M.: Epidemic models and Lotka-Volterra systems. IEEE Transactions on Automatic Control, Applications of the Poincare-Hopf Theorem (2021)
Lo, W.-C., Mao, S.: A hybrid stochastic method with adaptive time step control for reaction-diffusion systems. J. Comput. Phys. 379, 392–402 (2019)
Venturino, E.: The influence of diseases on Lotka-Volterra systems. The Rocky Mt. J. Math. 381–402 (1994)
Wollkind, D. J., Hastings, A. & Logan, J. A.: Models involving differential and integral equations appropriate for describing a temperature dependent predator-prey mite ecosystem on apples. In Modeling and differential equations in biology, 255–277 (Routledge, 2017)
Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching levenberg-marquardt algorithms. J. Electr. Spectrosc. Relat. Phenom. 227, 31–39 (2018)
Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi (1926)
Saakian, D.B., Koonin, E.V., Cheong, K.H.: Key role of recombination in evolutionary processes with migration between two habitats. Phys. Rev. E 100, 030401 (2019)
Thakur, N.K., Ojha, A., Tiwari, P.K., Upadhyay, R.K.: An investigation of delay induced stability transition in nutrient-plankton systems. Chaos Solit. Fract. 142, 110474 (2021)
Chen, X., Jiang, W., Ruan, S.: Global dynamics and complex patterns in Lotka-Volterra systems: the effects of both local and nonlocal intraspecific and interspecific competitions. J. Math. Anal. Appl. 499, 125015 (2021)
Gatabazi, P., Mba, J., Pindza, E., Labuschagne, C.: Grey Lotka-Volterra models with application to cryptocurrencies adoption. Chaos Solit. Fract. 122, 47–57 (2019)
Gatabazi, P., Mba, J., Pindza, E.: Modeling cryptocurrencies transaction counts using variable-order Fractional Grey Lotka-Volterra dynamical system. Chaos Solit. Fract. 127, 283–290 (2019)
Danks, H. V. et al.: Insect dormancy: an ecological perspective, vol. 1 (Biological Survey of Canada (Terrestrial Artropods) Ottawa, 1987)
Gyllström, M., Hansson, L.-A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295 (2004)
Dáger, R., Navarro, V., Negreanu, M.: Uniform boundedness for a predator-prey system with chemotaxis and dormancy of predators. Quart. Appl. Math. 79, 367–382 (2021)
Horvitz, C.C., Schemske, D.W.: Effects of dispersers, gaps, and predators on dormancy and seedling emergence in a tropical herb. Ecology 75, 1949–1958 (1994)
Jones, S.E., Lennon, J.T.: Dormancy contributes to the maintenance of microbial diversity. Proc.e Natl. Acad. Sci. 107, 5881–5886 (2010)
Alekseev, V., Lampert, W.: Maternal control of resting-egg production in Daphnia. Nature 414, 899–901 (2001)
Lubzens, E., Cerda, J., Clark, M.: Dormancy and resistance in harsh environments, vol. 21. Springer, New York (2010)
Paulsen, T.R., et al.: Physical dormancy in seeds: A game of hide and seek? New Phytol. 198, 496–503 (2013)
Lalonde, R., Roitberg, B.: Chaotic dynamics can select for long-term dormancy. The Am. Nat. 168, 127–131 (2006)
Paulsen, T.R., Högstedt, G., Thompson, K., Vandvik, V., Eliassen, S.: Conditions favouring hard seededness as a dispersal and predator escape strategy. J. Ecol. 102, 1475–1484 (2014)
Bradbeer, J.: Seed dormancy and germination. Springer, New York (2013)
Ricci, C.: Dormancy patterns in rotifers. Hydrobiologia 446, 1–11 (2001)
Brendonck, L., Pinceel, T., Ortells, R.: Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia 796, 201–222 (2017)
Freire, J.G., Gallas, M.R., Gallas, J.A.: Impact of predator dormancy on prey-predator dynamics. Chaos An Interdis. J. Nonlinear Sci. 28, 053118 (2018)
Waterkeyn, A., Vanoverbeke, J., Van Pottelbergh, N., Brendonck, L.: While they were sleeping: dormant egg predation by Triops. J. Plankton Res. 33, 1617–1621 (2011)
Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Num. Simul. 10, 681–691 (2005)
Freire, J. G., Gallas, M. R. & Gallas, J. A.: Nonchaos-mediated mixed-mode oscillations in a prey-predator model with predator dormancy. In Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, 101–114 (Springer, 2018)
Wang, J., Jiang, W.: Hopf-zero bifurcation of a delayed predator-prey model with dormancy of predators. J. Appl. Anal. Comput. 7, 1051–1069 (2017)
Thakur, N.K., Ojha, A., Jana, D., Upadhyay, R.K.: Modeling the plankton-fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dyn. 100, 4003–4029 (2020)
Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos An Interdis. J. Nonlinear Sci. 19, 043121 (2009)
Wen, T., Cheong, K.H.: The fractal dimension of complex networks: a review. Inform. Fus. 73, 87–102 (2021)
Dáger, R., Navarro, V., Negreanu, M.: Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis. Comptes Rendus. Mathé. 358, 103–108 (2020)
Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator-prey model with dormancy of predators. Nonlinear Dyn. 69, 1541–1558 (2012)
McCauley, E., Nisbet, R.M., Murdoch, W.W., de Roos, A.M., Gurney, W.S.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999)
Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009)
Kuwamura, M., Nakazawa, T.: Dormancy of predators dependent on the rate of variation in prey density. SIAM J. Appl. Math. 71, 169–179 (2011)
Wang, J., Jiang, W.: Impulsive perturbations in a predator-prey model with dormancy of predators. Appl. Math. Modell. 38, 2533–2542 (2014)
Zegeling, A., Kooij, R.E.: Singular perturbations of the holling i predator-prey system with a focus. J. Diff. Equ. 269, 5434–5462 (2020)
Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)
Tan, Z.-X., Koh, J.M., Koonin, E.V., Cheong, K.H.: Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7, 1901559 (2020)
Soo, W.W.M., Cheong, K.H.: Occurrence of complementary processes in Parrondo’s paradox. Physica A Stat. Mech. Appl. 412, 180–185 (2014)
Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the Parrondo effect across biology. BioEssays 41, 1900027 (2019)
Harmer, G.P., Abbott, D.: Losing strategies can win by parrondo’s paradox. Nature 402, 864–864 (1999)
Cheong, K.H., Soo, W.W.M.: Construction of novel stochastic matrices for analysis of Parrondo’s paradox. Physica A Stat. Mech. Appl. 392, 4727–4738 (2013)
Soo, W.W.M., Cheong, K.H.: Parrondo’s paradox and complementary Parrondo processes. Physica A Stat. Mech. Appl. 392, 17–26 (2013)
Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 1–12 (2016)
Lai, J. W. & Cheong, K. H.: Social dynamics and Parrondo’s paradox: a narrative review. Nonlinear Dyn. 1–20 (2020)
Rousselet, J., Salome, L., Ajdari, A., Prostt, J.: Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–447 (1994)
Lai, J.W., Cheong, K.H.: Parrondo’s paradox from classical to quantum: a review. Nonlinear Dyn. 100, 849–861 (2020)
Lai, J.W., Chang, J., Ang, L., Cheong, K.H.: Multi-level information fusion to alleviate network congestion. Inform. Fus. 63, 248–255 (2020)
Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. Elife 6, e21673 (2017)
Ye, Y., et al.: Ratcheting based on neighboring niches determines lifestyle. Nonlinear Dyn. 98, 1821–1830 (2019)
Cheong, K.H., Tan, Z.X., Ling, Y.H.: A time-based switching scheme for nomadic-colonial alternation under noisy conditions. Commun. Nonlinear Sci. Num. Simul. 60, 107–114 (2018)
Koh, J.M., Xie, N.-G., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467–1477 (2018)
Cheong, K.H., Wen, T., Lai, J.W.: Relieving cost of epidemic by Parrondo’s paradox: a covid-19 case study. Adv. Sci. 7, 2002324 (2020)
Tan, Z.-X., Cheong, K.H.: Periodic habitat destruction and migration can paradoxically enable sustainable territorial expansion. Nonlinear Dyn. 98, 1–13 (2019)
Cheong, K. H., Wen, T., Benler, S. & Koonin, E. V.: Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo’s paradox. bioRxiv (2021)
Wen, T., Koonin, E.V., Cheong, K.H.: An alternating active-dormitive strategy enables disadvantaged prey to outcompete the perennially active prey through parrondo’s paradox. BMC Biol. 19, 168 (2021)
Geiser, F., Turbill, C.: Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96, 1235–1240 (2009)
Jiao, J., Cai, S., Chen, L.: Dynamics of a plankton-nutrient chemostat model with hibernation and it described by impulsive switched systems. J. Appl. Math. Comput. 53, 583–598 (2017)
Kobbe, S., Dausmann, K.H.: Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 96, 1221–1227 (2009)
Leck, M.A.: Ecology of soil seed banks. Elsevier, Amsterdam (2012)
Lennon, J.T., Jones, S.E.: Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Rev. Microbiol. 9, 119–130 (2011)
Begon, M., Harper, J.L., Townsend, C.R., et al.: Ecology. Individuals, populations and communities. Blackwell scientific publications, Hoboken (1986)
Berryman, A.A.: The orgins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992)
Lin, X., Weng, P., Wu, C.: Traveling wave solutions for a predator-prey system with sigmoidal response function. J. Dyn. Diff. Equ. 23, 903–921 (2011)
Kuwamura, M.: Stability of coexisting equilibrium of prey-predator systems with dormancy of predators. Funkcialaj Ekvacioj 57, 339–350 (2014)
Hairston, N.G., Jr., Van Brunt, R.A., Kearns, C.M., Engstrom, D.R.: Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76, 1706–1711 (1995)
Genkai Kato, M., Yamamura, N.: Unpalatable prey resolves the paradox of enrichment. Proc. Royal Soc. London Ser. B Biol. Sci. 266, 1215–1219 (1999)
Genkai-Kato, M., Yamamura, N.: Profitability of prey determines the response of population abundances to enrichment. Proc. Royal Soc. London Ser. B Biol. Sci. 267, 2397–2401 (2000)
Scheffer, M., De Boer, R.J.: Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76, 2270–2277 (1995)
Vos, M., Kooi, B.W., DeAngelis, D.L., Mooij, W.M.: Inducible defences and the paradox of enrichment. Oikos 105, 471–480 (2004)
Nakazawa, T., Kuwamura, M., Yamamura, N.: Implications of resting eggs of zooplankton for the paradox of enrichment. Popul. Ecol. 53, 341–350 (2011)
Arbačiauskas, K. & Lampert, W.: Seasonal adaptation of ex-ephippio and parthenogenetic offspring of daphnia magna: differences in life history and physiology. Funct. Ecol. 431–437 (2003)
Scheffer, M., Rinaldi, S., Kuznetsov, Y. A. & van Nes, E. H. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 519–532 (1997)
Takimoto, G., Iwata, T., Murakami, M.: Seasonal subsidy stabilizes food web dynamics: balance in a heterogeneous landscape. Ecol. Res. 17, 433–439 (2002)
Hairston, N.G., Jr., Hansen, A.-M., Schaffner, W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45, 133–145 (2000)
Qi An, W.J.: Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discr. Contin. Dyn. Syst. B 24, 487–510 (2019)
Novrianti, N., Sawada, O. & Tsuge, N.: Nonnegative solutions to the reaction-diffusion equations for prey-predator models with the dormancy of predators. Authorea Preprints (2021)
Cross, G.: Three types of matrix stability. Linear Algebra Appl. 20, 253–263 (1978)
Chakraborty, K., Manthena, V.: Modelling and analysis of spatio-temporal dynamics of a marine ecosystem. Nonlinear Dyn. 81, 1895–1906 (2015)
Novrianti, Sawada, O., Tsuge, N.: Positive solutions to the reaction diffusion equations for prey-predator models with dormancy of predators (2019). https://arxiv.org/abs/1908.11050
Thakur, N. K., Ojha, A. & Tiwari, S.: The role of adaptation in plankton system with beddington-deangelis type functional response. In: International Conference on Mathematical Modelling and Scientific Computation, 21–33 (Springer, 2018)
Thakur, N.K., Ojha, A.: Complex plankton dynamics induced by adaptation and defense. Model. Earth Syst. Environ. 6, 907–916 (2020)
Thakur, N.K., Ojha, A.: Complex dynamics of delay-induced plankton-fish interaction exhibiting defense. SN Appl. Sci. 2, 1–25 (2020)
Dáger, R., Navarro, V., Negreanu, M., Vargas, A.: Uniform asymptotic behavior of numerical solutions for a predator-prey system with diffusion and chemotaxis. Eng. Anal. Bound. Elem. 120, 82–94 (2020)
Helle, W., Sabelis, M.W.: Spider mites: their biology, natural enemies and control, vol. 1. Elsevier, Amsterdam (1985)
Roughgarden, J.: Theory of population genetics and evolutionary ecology: an introduction (1979)
Rose, K.A., Swartzman, G.L., Kindig, A.C., Taub, F.B.: Stepwise iterative calibration of a multi-species phytoplankton-zooplankton simulation model using laboratory data. Ecol. Modell. 42, 1–32 (1988)
Koh, J.M., Cheong, K.H.: New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. Nonlinear Dyn. 96, 257–266 (2019)
Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 1–17 (2016)
Dai, Y..y: Game dynamics of emotion evolution based on the Moran process. Chaos An Interdis. J. Nonlinear Sci. 31, 033153 (2021)
Koh, J.M., Cheong, K.H.: Generalized solutions of Parrondo’s games. Adv. Sci. 7, 2001126 (2020)
Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)
Koh, J.M., Cheong, K.H.: Emergent preeminence of selfishness: an anomalous Parrondo perspective. Nonlinear Dyn. 98, 943–951 (2019)
Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of Parrondo’s paradox. Proc. Natl. Acad. Sci. 115, E5258–E5259 (2018)
Acknowledgements
This work is partially supported by AcRF Tier 2 Grant No. MOE-T2EP50120-0021 from Ministry of Education of Singapore. The work of T. Kalmár-Nagy is supported by the NRDI Funds (TKP2020 IES, Grant No. BME-IE-WAT; TKP2020 NC, Grant No. BME-NCS) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wen, T., Gao, Q., Kalmár-Nagy, T. et al. A review of predator–prey systems with dormancy of predators. Nonlinear Dyn 107, 3271–3289 (2022). https://doi.org/10.1007/s11071-021-07083-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-021-07083-x