Skip to main content

Dynamic behavior of T-beam resonator with repulsive actuation


Electrostatic MEMS transducer driven by repulsive force is an attractive possibility and has advantages of avoiding the pull-in instability, tuning the natural frequency, and achieving high sensitivity by applying high enough voltages. In this work, a “T”-shaped beam, which is formed by attaching a secondary beam perpendicular to a primary cantilever at the tip, is introduced and its nonlinear dynamics is analyzed. A reduced-order model is derived from mode shapes formed from electromechanical coupling effects respectively. Generalized forms of forced Mathieu equation of motion are derived, and then, dynamic behaviors are investigated through the theory of multiple scales. The resonant responses, including both primary and principal parametric resonances, reveal softening behavior originating from quadratic and cubic nonlinearities in the governing equation. The behavior of the T-beam is compared with traditional cantilever structure. The resonance under repulsive force demonstrates that the T-beam has several advantages over a traditional cantilever: Lower natural frequency but higher resonant responses can improve the signal-to-noise ratio; with an attached micropaddle, the T-beam has a larger surface for absorption of targeted analytes for mass sensing. We conclude that an electrostatic MEMS resonator with a “T”-shaped beam is potentially appropriate for the new generations of sensors and actuators.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

All data generated or analyzed during this study are included in this published article.


  1. Younis, M.I.: MEMS linear and nonlinear statics and dynamics. Springer, New York (2011)

    Book  Google Scholar 

  2. Rahmanian, S., Hosseini-Hashemi, S., Rezaei, M.: Out-of-plane motion detection in encapsulated electrostatic MEMS gyroscopes: principal parametric resonance. Int. J. Mech. Sci. (2020).

    Article  Google Scholar 

  3. Babatain, W., Bhattacharjee, S., Hussain, A.M., Hussain, M.M.: Acceleration sensors: sensing mechanisms, emerging fabrication strategies, materials, and applications. ACS Appl. Electron. Mater. 3(2), 504 (2021)

    Article  Google Scholar 

  4. Miles, R.N.: A compliant capacitive sensor for acoustics: avoiding electrostatic forces at high bias voltages. IEEE Sens. J. 18(14), 5691 (2018)

    Article  Google Scholar 

  5. Zhang, W., Yan, H., Peng, Z., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014).

    Article  Google Scholar 

  6. He, S., Mrad, R.B.: Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics. IEEE Trans. Ind. Electron. 52(4), 974 (2005)

    Article  Google Scholar 

  7. Lee, K., Cho, Y.H.: Laterally driven electrostatic repulsive-force microactuators using asymmetric field distribution. J. Microelectromech. Syst. 10, 128 (2001).

    Article  Google Scholar 

  8. Pallay, M., Daeichin, M., Towfighian, S.: Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation. Nonlinear Dyn. 89(2), 1525 (2017)

    Article  Google Scholar 

  9. He, S., Mrad, R.B.: Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator. J. Microelectromech. Syst. 17(3), 532 (2008)

    Article  Google Scholar 

  10. Ozdogan, M., Daeichin, M., Ramini, A., Towfighian, S.: Parametric resonance of a repulsive force MEMS electrostatic mirror. Sens. Actuators A Phys. 265, 20 (2017)

    Article  Google Scholar 

  11. Ozdogan, M., Towfighian, S., Miles, R.N.: Modeling and characterization of a pull-in free MEMS microphone. IEEE Sens. J. 20(12), 6314 (2020)

    Article  Google Scholar 

  12. Daeichin, M., Ozdogan, M., Towfighian, S., Miles, R.: Dynamic response of a tunable MEMS accelerometer based on repulsive force. Sens. Actuators A Phys. 289, 34 (2019)

    Article  Google Scholar 

  13. Pallay, M., Miles, R.N., Towfighian, S.: A tunable electrostatic MEMS pressure switch. IEEE Trans. Ind. Electron. 67(11), 9833 (2019)

    Article  Google Scholar 

  14. Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., Younis, M.I.: Multimode excitation of a metal organics frameworks coated microbeam for smart gas sensing and actuation. Sens. Actuators A Phys. 283, 254 (2018)

    Article  Google Scholar 

  15. Henriksson, J., Villanueva, L.G., Brugger, J.: Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator. Nanoscale 4, 5059 (2012)

    Article  Google Scholar 

  16. Battiston, F., Ramseyer, J.P., Lang, H., Baller, M., Gerber, C., Gimzewski, J., Meyer, E., Güntherodt, H.J.: A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens. Actuators B Chem. 77(1–2), 122 (2001)

    Article  Google Scholar 

  17. Bouchaala, A., Jaber, N., Shekhah, O., Chernikova, V., Eddaoudi, M., Younis, M.: A smart microelectromechanical sensor and switch triggered by gas. Appl. Phys. Lett. 109, 013502 (2016).

    Article  Google Scholar 

  18. Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., Younis, M.I.: In: 2018 IEEE Sensors, pp. 1–4 (2018)

  19. Nayfeh, A.H., Quakad, H.M., Najar, F., Choura, S., Abdel-Rahman, E.M.: Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 59, 607 (2010)

    Article  Google Scholar 

  20. Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. ASME. J. Vib. Acoust 126(3), 332–342 (2004)

    Article  Google Scholar 

  21. Rabih, A.A., Dennis, J., Ahmed, A., Khir, M.M., Ahmed, M.G., Idris, A., Mian, M.U.: MEMS-based acetone vapor sensor for non-invasive screening of diabetes. IEEE Sens. J. 18(23), 9486 (2018)

    Article  Google Scholar 

  22. Zhang, W., Baskaran, R., Turner, K.L.: In: ASME International Mechanical Engineering Congress and Exposition, vol. 36428, pp. 121–125 (2002)

  23. Moran, K., Burgner, C., Shaw, S., Turner, K.: A review of parametric resonance in microelectromechanical systems. Nonlinear Theory Appl. IEICE 4(3), 198 (2013)

    Article  Google Scholar 

  24. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296(4–5), 797 (2006)

    Article  Google Scholar 

  25. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16(5), 890 (2006)

    Article  Google Scholar 

  26. DeMartini, B.E., Rhoads, J.F., Turner, K.L., Shaw, S.W., Moehlis, J.: Linear and nonlinear tuning of parametrically excited MEMS oscillators. J. Microelectromech. Syst. 16(2), 310 (2007)

    Article  Google Scholar 

  27. Prakash, G., Raman, A., Rhoads, J., Reifenberger, R.G.: Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments. Rev. Sci. Instrum. 83(6), 065109 (2012)

    Article  Google Scholar 

  28. Pallay, M., Towfighian, S.: A parametric electrostatic resonator using repulsive force. Sens. Actuators A Phys. 277, 134 (2018)

    Article  Google Scholar 

  29. Pallay, M., Daeichin, M., Towfighian, S.: Feasibility study of a micro-electro-mechanical-systems threshold-pressure sensor based on parametric resonance: experimental and theoretical investigations. J. Micromech. Microeng. 31(2), 025002 (2020)

    Article  Google Scholar 

  30. Daeichin, M., Miles, R.N., Towfighian, S.: Experimental characterization of the electrostatic levitation force in MEMS transducers. J. Vib. Acoust. 142(4), 041008 (2020)

    Article  Google Scholar 

  31. Daeichin, M., Miles, R., Towfighian, S.: Lateral pull-in instability of electrostatic MEMS transducers employing repulsive force. Nonlinear Dyn. 100(3), 1927 (2020)

    Article  Google Scholar 

  32. Rabenimanana, T., Walter, V., Kacem, N., Le Moal, P., Bourbon, G., Lardies, J.: Mass sensor using mode localization in two weakly coupled MEMS cantilevers with different lengths: design and experimental model validation. Sens. Actuators A Phys. 295, 643 (2019)

    Article  Google Scholar 

  33. Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mechan. Syst. Signal Process. 90, 317 (2017)

    Article  Google Scholar 

Download references


The authors would like to acknowledge the financial support of this study by National Science Foundation (NSF) through grant CMMI 1919608.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shahrzad Towfighian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



1.1 A. Derivation of voltage-related modes

Using Galerkin’s method to discretize, we approximate the beam deflection as:

$$\begin{aligned} W(x,t){\approx }W_s(x)+\sum _{j=1}^n\phi (x)q(t),\ \ddot{q}(t)=-\omega ^2q(t).\nonumber \\ \end{aligned}$$

In our case, the mode shape for a T-beam is of the form:

$$\begin{aligned} \phi (x)= & {} c_1\cos ({\beta }x)+c_2\sin ({\beta }x)+c_3\cosh ({\beta }x)\nonumber \\&+c_4\sinh ({\beta }x) \end{aligned}$$

in which we have \(\omega =\beta ^2\).

Plug into boundary conditions and combine them with \(W_s(x): @x=0\):

$$\begin{aligned} \phi (x)q(t)= & {} 0 \Rightarrow c_1+c_3=0 \end{aligned}$$
$$\begin{aligned} \phi '(x)q(t)= & {} 0 \Rightarrow c_2+c_4=0 \end{aligned}$$


$$\begin{aligned}&\phi ''(x)q(t)+ML_C\phi (x)\ddot{q}(t)+\frac{4}{3}ML^2_C\phi '(x)\ddot{q}(t)\nonumber \\&\quad +V^2\kappa _1\sum _{i=0}^9r_ih^i\left( [W_s(x)+\phi (x)q(t)]^i-[W_s(x)]^i\right) \nonumber \\&\quad +V^2\kappa _2\bigg ([W'_s(x)+\phi '(x)q(t)]\sum _{i=0}^{8}r_{i+1}h^{i+1}[W_s(x)\nonumber \\&\quad +\phi (x)q(t)]^i\nonumber \\&\quad -W'_s(x)\sum _{i=0}^{8}r_{i+1}h^{i+1}[W_s(x)]^i\bigg )=0 \end{aligned}$$
$$\begin{aligned}&\phi '''(x)q(t)-M\phi (x)\ddot{q}(t)-ML_C\phi '(x)\ddot{q}(t)\nonumber \\&\quad -V^2\kappa _3\sum _{i=0}^9r_ih^i\left( [W_s(x)+\phi (x)q(t)]^i-[W_s(x)]^i\right) \nonumber \\&\quad -V^2\kappa _4\bigg ([W'_s(x)+\phi '(x)q(t)]\sum _{i=0}^{8}r_{i+1}h^{i+1}[W_s(x)\nonumber \\&\quad +\phi (x)q(t)]^i\nonumber \\&\quad -W'_s(x)\sum _{i=0}^{8}r_{i+1}h^{i+1}[W_s(x)]^i\bigg )=0. \end{aligned}$$

Simplify the above to be:


$$\begin{aligned}&\phi ''(x)q(t)-\omega ^2ML_C\phi (x){q}(t)-\frac{4}{3}\omega ^2ML^2_C\phi '(x){q}(t)\nonumber \\&\qquad +V^2\kappa _1\sum _{i=0}^9r_ih^i\left( [W_s(x)+\phi (x)q(t)]^i-[W_s(x)]^i\right) \nonumber \\&\qquad +V^2\kappa _2W'_s(x)\sum _{i=0}^{8}r_{i+1}h^{i+1}\times \end{aligned}$$
$$\begin{aligned}&\bigg ([W_s(x)+\phi (x)q(t)]^i-[W_s(x)]^i\bigg )\nonumber \\&\qquad +V^2\kappa _2\phi '(x)q(t)\sum _{i=0}^{8}r_{i+1}h^{i+1}\times \nonumber \\&\bigg [W_s(x)+\phi (x)q(t)\bigg ]^i\end{aligned}$$
$$\begin{aligned}&\quad =0 \end{aligned}$$
$$\begin{aligned}&\phi '''(x)q(t)+\omega ^2M\phi (x){q}(t)+\omega ^2ML_C\phi '(x){q}(t)\nonumber \\&\qquad -V^2\kappa _3\sum _{i=0}^9r_ih^i\left( [W_s(x)+\phi (x)q(t)]^i-[W_s(x)]^i\right) \nonumber \\&\qquad -V^2\kappa _4W'_s(x)\sum _{i=0}^{8}r_{i+1}h^{i+1} \times \end{aligned}$$
$$\begin{aligned}&\bigg ([W_s(x)+\phi (x)q(t)]^i-[W_s(x)]^i\bigg )\nonumber \\&\qquad -V^2\kappa _4\phi '(x)q(t)\sum _{i=0}^{8}r_{i+1}h^{i+1}\nonumber \\&\qquad \times \bigg [W_s(x)+\phi (x)q(t)\bigg ]^i \end{aligned}$$
$$\begin{aligned}&\quad =0. \end{aligned}$$

Drop nonlinear terms of \(\phi (x)q(t)\) and q(t) is canceled:


$$\begin{aligned}&\phi ''(x)-\omega ^2ML_C\phi (x)-\frac{4}{3}\omega ^2ML^2_C\phi '(x)\nonumber \\&\quad +V^2\kappa _1\phi (x)\sum _{i=1}^9r_ih^i\genfrac(){0.0pt}1{i}{1}[W_s(x)]^{i-1}\nonumber \\&\quad +V^2\kappa _2W'_s(x)\phi (x)\sum _{i=1}^{8}r_{i+1}h^{i+1}\genfrac(){0.0pt}1{i}{1}[W_s(x)]^{i-1}\nonumber \\&\quad +V^2\kappa _2\phi '(x)r_{1}h=0 \end{aligned}$$
$$\begin{aligned}&\phi '''(x)+\omega ^2M\phi (x)+\omega ^2ML_C\phi '(x)\nonumber \\&\quad -V^2\kappa _3\phi (x)\sum _{i=1}^9r_ih^i\genfrac(){0.0pt}1{i}{1}[W_s(x)]^{i-1}\nonumber \\&\quad -V^2\kappa _4W'_s(x)\phi (x)\sum _{i=1}^{8}r_{i+1}h^{i+1}\genfrac(){0.0pt}1{i}{1}[W_s(x)]^{i-1}\nonumber \\&\quad -V^2\kappa _4\phi '(x)r_{1}h=0. \end{aligned}$$
Table 7 Voltage-related mode shapes

The algebraic equations above can be solved, and therefore, voltage-related natural frequencies are obtained as given in Table 7. They are quite close to each other, most probably from dropping too many nonlinear terms, and both static and dynamic results based on them hardly have any difference.

1.2 B. Derivation of Mathieu’s equation [Eq. (23)] based on one-mode approximation

One mechanical mode approximation is applied after checking the voltage-related modes. From static deflection \(q_s\), we have:

$$\begin{aligned} \begin{aligned}&\int _{0}^{1}\phi _{1}(x)\phi ''''_{1}(x)dx{q}_{s}\\&\qquad +{\alpha }({V}_{DC}^2)\sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}(q_s)^i{dx}\\&\quad =K_{11}{q}_{s}+{\alpha }({V}_{DC}^2)\sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}(q_s)^i{dx}\\&\quad =0. \end{aligned} \end{aligned}$$

Plug \(V^2={V}_{DC}^2+2V_{DC}V_{AC}cos{\omega {t}}\) and \(q_{1}(t)=q_{total}(t)=q_s+q(t)\) into Eq. (21):

$$\begin{aligned} \begin{aligned}&\int _{0}^{1}(\phi _{1}(x))^{2}dx\ddot{q}(t)+c\int _{0}^{1}(\phi _{1}(x))^{2}dx{\dot{q}}(t)\\&\qquad +\int _{0}^{1}\phi _{1}(x)\phi ''''_{1}(x)dx(q_s+q(t))\\&\qquad +{\alpha }({V}_{DC}^2)\sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}(q_s+q(t))^i{dx}\\&\qquad +{\alpha }(2V_{DC}V_{AC}cos{\omega {t}})\\&\qquad \times \sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}(q_s+q(t))^i{dx}\\&\quad =M_{11}\ddot{q}(t)+2\zeta {\omega _0}M_{11}{\dot{q}}(t)+K_{11}(q_s+q(t))\\&\qquad +{\alpha }({V}_{DC}^2)\times \sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}{dx}(q_s+q(t))^i\\&\qquad +{\alpha }(2V_{DC}V_{AC}cos{\omega {t}})\\&\qquad \times \sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}{dx}(q_s+q(t))^i=0. \end{aligned} \end{aligned}$$

Subtract Eq. (64) from (65) and do some manipulating with respect to \(\tau =\omega _0{t}\):

$$\begin{aligned} \begin{aligned}&{\omega _0}^2\ddot{q}(\tau )+2\zeta {\omega _0}\times {\omega _0}{\dot{q}}(\tau )+\frac{K_{11}}{M_{11}}(q(\tau ))\\&\quad +\frac{\alpha }{M_{11}}({V}_{DC}^2+2V_{DC}V_{AC}cos{\frac{\omega }{\omega _0}{\tau }})\sum _{i=0}^{9}p_{i}{h}^{i}\\&\quad \times \int _{0}^{1}(\phi _{1}(x))^{i+1}(q_s+q(\tau ))^i{dx}\\&\quad -\frac{\alpha }{M_{11}}({V}_{DC}^2)\sum _{i=0}^{9}p_{i}{h}^{i}\int _{0}^{1}(\phi _{1}(x))^{i+1}(q_s)^i{dx}=0. \end{aligned} \end{aligned}$$

Finally, rearranging based on order of \((q(t))^k (k=0,1,2,...)\) in the expansion of \((q_s+q(t))^i\) and manipulating the equation with respect to \(q(\tau )=q(\omega _0{t})\), we will get Eq. (23).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Daeichin, M. & Towfighian, S. Dynamic behavior of T-beam resonator with repulsive actuation. Nonlinear Dyn 107, 15–31 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: