Skip to main content
Log in

Finite-time synchronization control for a class of perturbed nonlinear systems with fixed convergence time and hysteresis quantizer: applied to Genesio–Tesi chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present article, a terminal sliding mode control strategy has been proposed in order to address the synchronization problem for a class of perturbed nonlinear systems with fixed convergence time and input quantization. The proposed protocol guarantees the fixed-time convergence of the sliding manifold to the origin, which means that the convergence time of the proposed sliding manifold does not change on the variations of initial values, different from typical control methods. Here, the hysteresis quantizer, as a specific type of quantizer with nonlinear sector-bounded, is applied in order to quantize the input signal. The proposed quantized control scheme vigorously prevents the potential adverse chattering phenomenon which is experienced in the common quantization methods. The proposed controller does not need the limiting criteria related to considered parameters of quantization compared to recent control approaches. Finally, the designed controller is implemented on the perturbed Genesio–Tesi (G–T) chaotic systems to verify effectiveness and strength of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Farsi, M., Liu, J.: Nonlinear optimal feedback control and stability analysis of solar photovoltaic systems. IEEE Trans. Control Syst. Technol. 28, 2104–2119 (2019)

    Article  Google Scholar 

  2. Tahoumi, E., Plestan, F., Ghanes, M., Barbot, J.P.: New robust control schemes based on both linear and sliding mode approaches: Design and application to an electropneumatic actuator. IEEE Trans. Control Syst. Technol. (2019)

  3. Asadollahi, M., Ghiasi, A.R., Badamchizadeh, M.A.: Adaptive synchronization of chaotic systems with hysteresis quantizer input. ISA Trans. 98, 137–148 (2020)

    Article  Google Scholar 

  4. Kooshkbaghi, M., Marquez, H.J., Xu, W.: Event-triggered approach to dynamic state estimation of a synchronous machine using cubature kalman filter. IEEE Trans. Control Syst. Technol. 28, 2013–2020 (2019)

    Article  Google Scholar 

  5. Aslmostafa, E., Ghaemi, S., Badamchizadeh, M.A., Ghiasi, A.R.: Adaptive backstepping quantized control for a class of unknown nonlinear systems. Presented at the (2021)

  6. Dong, X., He, S., Stojanovic, V.: Robust fault detection filter design for a class of discrete-time conic-type non-linear markov jump systems with jump fault signals. IET Control Theory Appl. 14(14), 1912–1919 (2020)

    Article  Google Scholar 

  7. Shang, C., Chen, W.H., Stroock, A.D., You, F.: Robust model predictive control of irrigation systems with active uncertainty learning and data analytics. IEEE Trans. Control Syst. Technol. 28, 1493–1504 (2019)

    Article  Google Scholar 

  8. Bhat, M.A.: Shikha: complete synchronisation of non-identical fractional order hyperchaotic systems using active control. Int. J. Autom. Control 13(2), 140–157 (2019)

    Article  MathSciNet  Google Scholar 

  9. Mirzaei, M.J., Aslmostafa, E., Asadollahi, M., Badamchizadeh, M.A.: Robust adaptive finite-time stabilization control for a class of nonlinear switched systems based on finite-time disturbance observer. J. Franklin Inst. 358(7), 3332–3352 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yao, S., Gao, G., Gao, Z., Li, S.: Active disturbance rejection synchronization control for parallel electro-coating conveyor. ISA Trans. 101, 327–334 (2020)

    Article  Google Scholar 

  11. Xiong, J.J., Zhang, G.B., Wang, J.X., Yan, T.H.: Improved sliding mode control for finite-time synchronization of nonidentical delayed recurrent neural networks. Presented at the (2019)

  12. Wen, S., Huang, T., Yu, X., Chen, M.Z., Zeng, Z.: Sliding-mode control of memristive chua’s systems via the event-based method. IEEE Trans. Circ. Syst. II Express Briefs 64(1), 81–85 (2016)

  13. Mobayen, S., Tchier, F.: Composite nonlinear feedback integral sliding mode tracker design for uncertain switched systems with input saturation. Commun. Nonlinear Sci. Numer. Simul. 65, 173–184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moreno, J.A., Osorio, M.: Strict lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. control 57(4), 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cruz-Zavala, E., Moreno, J.A.: Homogeneous high order sliding mode design: a lyapunov approach. Automatica 80, 232–238 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nair, R.R., Behera, L., Kumar, S.: Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances. IEEE Trans. Control Syst. Technol. 27(1), 39–47 (2017)

    Article  Google Scholar 

  17. Li, L., Shi, P., Ahn, C.K.: Distributed iterative fir consensus filter for multiagent systems over sensor networks. IEEE Trans. Cybern. (2020)

  18. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ríos, H., Efimov, D., Moreno, J.A., Perruquetti, W., Rueda-Escobedo, J.G.: Time-varying parameter identification algorithms: finite and fixed-time convergence. IEEE Trans. Autom. Control 62(7), 3671–3678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, R.: A novel track control for lorenz system with single state feedback. Chaos Solitons Fractals 122, 236–244 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohammadzadeh, A., Ghaemi, S.: Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy cmac. Nonlinear Dyn. 88(4), 2993–3002 (2017)

    Article  Google Scholar 

  23. Edamana, B., Chen, Y., Slavin, D., Aktakka, E.E., Oldham, K.R.: Estimation with threshold sensing for gyroscope calibration using a piezoelectric microstage. IEEE Trans. Control Syst. Technol. 23(5), 1943–1951 (2015)

    Article  Google Scholar 

  24. Song, Z., Sun, K., Ling, S.: Stabilization and synchronization for a mechanical system via adaptive sliding mode control. ISA Trans. 68, 353–366 (2017)

    Article  Google Scholar 

  25. Xia, X., Fang, Y., Zhang, T.: Adaptive quantized DSC of output-constrained uncertain nonlinear systems with quantized input and input unmodeled dynamics. J. Franklin Inst. 357(9), 5199–5225 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hayakawa, T., Ishii, H., Tsumura, K.: Adaptive quantized control for nonlinear uncertain systems. Syst. Control Lett. 58(9), 625–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lang, X., Damaren, C.J., Cao, X.: Passivity-based attitude control with input quantization. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. 233(4), 1546–1551 (2019)

    Article  Google Scholar 

  28. Ma, H., Zhou, Q., Bai, L., Liang, H.: Observer-based adaptive fuzzy fault-tolerant control for stochastic nonstrict-feedback nonlinear systems with input quantization. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 287–298 (2018)

    Article  Google Scholar 

  29. Zhou, J., Wen, C., Yang, G.: Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 59(2), 460–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, T., Zuo, Z., Wang, Y.: Quantizer-based triggered control for chaotic synchronization with information constraints. IEEE Trans. Cybern. 48(8), 2500–2508 (2017)

    Article  Google Scholar 

  31. Zhang, G., Huo, X., Liu, J., Ma, K.: Adaptive control with quantized inputs processed by lipschitz logarithmic quantizer. Int. J. Control Autom. Syst. 19(2), 921–930 (2021)

    Article  Google Scholar 

  32. Wu, H., Liu, Z., Zhang, Y., Chen, C.P.: Adaptive fuzzy quantized control for nonlinear systems with hysteretic actuator using a new filter-connected quantizer. IEEE Trans. Cybern. 50(3), 876–889 (2018)

    Article  Google Scholar 

  33. Liu, W., Qi, X., Lu, J., Jia, X., Li, P.: Finite-time fault-tolerant control for nonlinear systems with input quantization and its application. IEEE Trans. Circ. Syst. II Express Briefs 67, 1249–1253 (2019)

    Google Scholar 

  34. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2853–2868 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. De Persis, C., Mazenc, F.: Stability of quantized time-delay nonlinear systems: a lyapunov-krasowskii-functional approach. Math. Control Signals Syst. 21(4), 337–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, D., Li, S., Gao, F.: A new terminal sliding mode control for robotic manipulators. Int. J. Control 82(10), 1804–1813 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mishra, J.P., Yu, X., Jalili, M.: Arbitrary-order continuous finite-time sliding mode controller for fixed-time convergence. IEEE Trans. Circ. Syst II Express Briefs 65(12), 1988–1992 (2018)

    Google Scholar 

  39. Basin, M., Panathula, C.B., Shtessel, Y.: Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control. Int. J. Control 89(9), 1777–1787 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Basin, M., Panathula, C.B., Shtessel, Y.: Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation. IET Control Theory Appl. 11(8), 1104–1111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit lyapunov function approach. Automatica 51, 332–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hamel, S., Boulkroune, A.: A generalized function projective synchronization scheme for uncertain chaotic systems subject to input nonlinearities. Int. J. Gen. Syst. 45(6), 689–710 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yu, X., Lin, Y.: Adaptive backstepping quantized control for a class of nonlinear systems. IEEE Trans. Autom. Control 62(2), 981–985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bisheban, M., Lee, T.: Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Trans. Control Syst. Technol. 29, 1533–1548 (2020)

    Article  Google Scholar 

  46. Huerta, H., Loukianov, A.G., Cañedo, J.M.: Passivity sliding mode control of large-scale power systems. IEEE Trans. Control Syst. Technol. 99, 1–9 (2018)

    Google Scholar 

  47. Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)

    Article  MATH  Google Scholar 

  48. Dadras, S., Momeni, H.R.: Control uncertain genesio-tesi chaotic system: adaptive sliding mode approach. Chaos Solitons Fractals 42(5), 3140–3146 (2009)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Asadollahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

We, the undersigned, give our consent for the publication of identifiable details, which can include photograph(s) and/or details within the text to be published in the above journal and article.

Code availability

Data will be made available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M.J., Aslmostafa, E., Asadollahi, M. et al. Finite-time synchronization control for a class of perturbed nonlinear systems with fixed convergence time and hysteresis quantizer: applied to Genesio–Tesi chaotic system. Nonlinear Dyn 107, 2327–2343 (2022). https://doi.org/10.1007/s11071-021-07051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07051-5

Keywords

Navigation