Skip to main content
Log in

Dynamic behavior of a flexible rotor system with squeeze film damper considering oil-film inertia under base motions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under parametric excitations and external forces induced by base motions, dynamic behavior of an on-board rotor system supported by squeeze film damper (SFD) considering fluid inertia was investigated. Based on perturbation method, oil-film pressure and three-dimensional velocities were represented by first-order functions of the Reynolds number. Using finite difference and numerical integration, an oil-film inertia SFD model was established to calculate pressure distribution and oil-film forces. Excited by time-varying base motions, dynamic responses and bifurcation behavior of SFD-rotor system were analyzed by Newmark–HHT method. The results indicate that when the journal whirls at a large eccentricity ratio, the pressure distribution is sensitive to oil-film inertia, reducing radial force while increasing tangential force. For high rotating speed and large eccentricity, the inertia effect dampens resonant amplitude. Under base transverse rotations, the journal’s whirling orbits deviate from the bearing’s center, and sub-harmonic frequencies appear with fundamental frequency. Under base harmonic translation, the journal’s motion is transformed from periodic to quasi-periodic, and the stability is gradually deteriorated with harmonic frequency. Overall, a flexible approach is established to calculate dynamic behavior of SFD-rotor system considering oil-film inertia under base motions, which provides technical support for dynamic design of on-board rotor systems in gas turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Lund, J.W., Smalley, A.J., Tecza, J.A., Walton, J.F.: Squeeze-film damper technology: part 1 - prediction of finite length damper performance. In: ASME. Turbo Expo: Power for Land, Sea, and Air, Phoenix, Arizona, USA. International Gas Turbine Institute (1983). https://doi.org/10.1115/83-GT-247

  2. Tecza, J.A., Giordano, J.C., Zorzi, E.S., Drake, S.K.: Squeeze-film damper technology: part 2 - experimental verification using a controlled-orbit test rig. In: ASME. Turbo Expo: Power for Land, Sea, and Air, Phoenix, Arizona, USA. International Gas Turbine Institute (1983). https://doi.org/10.1115/83-GT-248

  3. Holmes, R., Dogan, M.: Investigation of a rotor bearing assembly incorporating a squeeze-film damper bearing. J. Mech. Eng. Sci. 24(3), 129–137 (1982). https://doi.org/10.1243/JMES_JOUR_1982_024_026_02

    Article  Google Scholar 

  4. Holmes, R., Dogan, M.: The performance of a sealed squeeze-film bearing in a flexible support structure. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 199(1), 1–9 (1985). https://doi.org/10.1243/PIME_PROC_1985_199_084_02

    Article  Google Scholar 

  5. Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988)

    Google Scholar 

  6. Zeidan, F.Y., Vance, J.M.: Cavitation leading to a two phase fluid in a squeeze film damper. Tribol. Trans. 32(1), 100–104 (1989). https://doi.org/10.1080/10402008908981868

    Article  Google Scholar 

  7. Zeidan, F.Y., Vance, J.M.: Cavitation regimes in squeeze film dampers and their effect on the pressure distribution. Tribol. Trans. 33(3), 447–453 (1990). https://doi.org/10.1080/10402009008981975

    Article  Google Scholar 

  8. Mclean, L.J., Hahn, E.J.: Stability of squeeze film damped multi-mass flexible rotor bearing systems. J. Tribol. 107(3), 402–409 (1985). https://doi.org/10.1115/1.3261094

    Article  Google Scholar 

  9. Hahn, E.J., Chen, P.Y.P.: Harmonic balance analysis of general squeeze film damped multidegree-of-freedom rotor bearing systems. J. Tribol. 116(3), 499–507 (1994). https://doi.org/10.1115/1.2928872

    Article  Google Scholar 

  10. Zhao, J.Y., Linnett, I.W., Mclean, L.J.: Stability and bifurcation of unbalanced response of a squeeze film damped flexible rotor. J. Tribol. 116(2), 361–368 (1994). https://doi.org/10.1115/1.2927236

    Article  Google Scholar 

  11. Zhao, J.Y., Linnett, I.W., Mclean, L.J.: Subharmonic and quasi-periodic motions of an eccentric squeeze film damper-mounted rigid rotor. J. Vib. Acoust. Trans. ASME 116(3), 357–363 (1994). https://doi.org/10.1115/1.2930436

    Article  Google Scholar 

  12. Bonello, P., Hai, P.M.: A receptance harmonic balance technique for the computation of the vibration of a whole aero-engine model with nonlinear bearings. J. Sound Vib. 324(1–2), 221–242 (2009). https://doi.org/10.1016/j.jsv.2009.01.039

    Article  Google Scholar 

  13. Inayat-Hussain, J.I.: Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs. Chaos Solitons Fractals 39(2), 519–532 (2009). https://doi.org/10.1016/j.chaos.2007.01.086

    Article  Google Scholar 

  14. Younan, A.A., Cao, J.M., Dimond, T.W., Allaire, P.E.: Nonlinear analysis of squeeze film damper with entrained air in rotordynamic systems. Tribol. Trans. 54(1), 132–144 (2010). https://doi.org/10.1080/10402004.2010.529543

    Article  Google Scholar 

  15. Zapoměl, J., Ferfecki, P., Forte, P.: A new mathematical model of a short magnetorheological squeeze film damper for rotordynamic applications based on a bilinear oil representation—derivation of the governing equations. Appl. Math. Model. 52, 558–575 (2017). https://doi.org/10.1016/j.apm.2017.07.040

    Article  MathSciNet  MATH  Google Scholar 

  16. San Andres, L.A., Vance, J.M.: Effect of fluid inertia on the performance of squeeze film damper supported rotors. J. Eng. Gas Turbines Power 110(1), 51–57 (1988). https://doi.org/10.1115/1.3240086

    Article  Google Scholar 

  17. Crandall, S.H., EI-Shafei A,: Momentum and energy approximations for elementary squeeze-film damper flows. J. Appl. Mech. 60(3), 728–736 (1993). https://doi.org/10.1115/1.2900865

    Article  MATH  Google Scholar 

  18. El-Shafei, A.: A finite difference model for squeeze film dampers. J. Eng. Appl. Sci. 49(1), 159–174 (2002)

    Google Scholar 

  19. Han, Y., Rogers, R.J.: Nonlinear fluid forces in cylindrical squeeze films. Part I: short and long lengths. J. Fluids Struct. 15(1), 151–169 (2001). https://doi.org/10.1006/jfls.2000.0324

    Article  Google Scholar 

  20. Han, Y., Rogers, R.J.: Nonlinear fluid forces in cylindrical squeeze films. Part II: finite length. J. Fluids Struct. 15(1), 171–206 (2001). https://doi.org/10.1006/jfls.2000.0325

    Article  Google Scholar 

  21. Hamzehlouia, S., Behdinan, K.: First order perturbation technique for squeeze film dampers executing small amplitude circular centered orbits with aero-engine application. In: ASME 2016 International Mechnical Engineering Congress and Exposition, Phoenix, Arizona. International Gas Turbine Institute (2016). https://doi.org/10.1115/IMECE2016-65784

  22. Hamzehlouia, S., Behdinan, K.: A study of lubricant inertia effects for squeeze film dampers incorporated into high-speed turbomachinery. Lubricants 5(4), 43–74 (2017). https://doi.org/10.3390/lubricants5040043

    Article  Google Scholar 

  23. Hamzehlouia, S., Behdinan, K.: Squeeze film dampers supporting high-speed rotors: fluid inertia effects. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 234(1), 18–32 (2020). https://doi.org/10.1177/1350650119855792

    Article  Google Scholar 

  24. Koike, H., Ishihara, K.: Impact response of rotor-bearing system to an arbitrary excitation of pedestals (2nd report: experiments on rotor vibration due to various types of excitation). Bull. JSME 27(233), 2506–2513 (1984). https://doi.org/10.1299/jsme1958.27.2506

    Article  Google Scholar 

  25. Liu, J., Qiao, B., Chen, Y., Zhu, Y., He, W., Chen, X.: Impact force reconstruction and localization using nonconvex overlapping group sparsity. Mech. Syst. Signal Process. 162, 107983 (2022). https://doi.org/10.1016/j.ymssp.2021.107983

    Article  Google Scholar 

  26. Lee, A.S., Kim, B.O., Kim, Y.C.: A finite element transient response analysis method of a rotor-bearing system to base shock excitations using the state-space Newmark scheme and comparisons with experiments. J. Sound Vib. 297(3–5), 595–615 (2006). https://doi.org/10.1016/j.jsv.2006.04.028

    Article  Google Scholar 

  27. Bachelet, L., Driot, N., Ferraris, G., Poirion, F.: Dynamical behavior of a rotor under rotational random base excitation. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas. American Society of Mechanical Engineers, pp. 1251–1260 (2007). https://doi.org/10.1115/DETC2007-34799

  28. Duchemin, M., Berlioz, A., Ferraris, G.: Dynamic behavior and stability of a rotor under base excitation. J. Vib. Acoust. Trans. ASME 128(5), 576–585 (2006). https://doi.org/10.1115/1.2202159

    Article  Google Scholar 

  29. Driot, N., Lamarque, C.H., Berlioz, A.: Theoretical and experimental analysis of a base-excited rotor. J. Comput. Nonlinear Dyn. 1(3), 257–263 (2006). https://doi.org/10.1115/1.2209648

    Article  Google Scholar 

  30. El-Saeidy, F.A., Sticher, F.: Dynamics of a rigid rotor linear/nonlinear bearings system subject to rotating unbalance and base excitations. J. Vib. Control 16(3), 403–438 (2010). https://doi.org/10.1177/1077546309103565

    Article  MATH  Google Scholar 

  31. Chen, W., Jin, M., Huang, J., Chen, Y., Song, H.: A method to distinguish harmonic frequencies and remove the harmonic effect in operational modal analysis of rotating structures. Mech. Syst. Signal Process. 161, 107928 (2021). https://doi.org/10.1016/j.ymssp.2021.107928

    Article  Google Scholar 

  32. Chen, Y., Escalera Mendoza, A.S., Griffith, D.T.: Experimental and numerical study of high-order complex curvature mode shape and mode coupling on a three-bladed wind turbine assembly. Mech. Syst. Signal Process. 160, 107873 (2021). https://doi.org/10.1016/j.ymssp.2021.107873

    Article  Google Scholar 

  33. Chen, Y., Joffre, D., Avitabile, P.: Underwater dynamic response at limited points expanded to full-field strain response. J. Vib. Acoust. (2018). https://doi.org/10.1115/1.4039800

    Article  Google Scholar 

  34. Das, A.S., Dutt, J.K., Ray, K.: Active vibration control of unbalanced flexible rotor-shaft systems parametrically excited due to base motion. Appl. Math. Model. 34(9), 2353–2369 (2010). https://doi.org/10.1016/j.apm.2009.11.002

    Article  MathSciNet  MATH  Google Scholar 

  35. Soni, T., Das, A.S., Dutt, J.K.: Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping. J. Sound Vib. 467, 25 (2020). https://doi.org/10.1016/j.jsv.2019.115046

    Article  Google Scholar 

  36. Han, Q.K., Chu, F.L.: Parametric instability of flexible rotor-bearing system under time-periodic base angular motions. Appl. Math. Model. 39(15), 4511–4522 (2015). https://doi.org/10.1016/j.apm.2014.10.064

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, L.Q., Wang, J.J., Han, Q.K., Chu, F.L.: Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions. J. Sound Vib. 404, 58–83 (2017). https://doi.org/10.1016/j.jsv.2017.05.032

    Article  Google Scholar 

  38. Dakel, M., Baguet, S., Dufour, R.: Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings. J. Sound Vib. 333(10), 2774–2799 (2014). https://doi.org/10.1016/j.jsv.2013.12.021

    Article  Google Scholar 

  39. Wang, R., Guo, X.L., Wang, Y.F.: Nonlinear analysis of rotor system supported by oil lubricated bearings subjected to base movements. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(4), 543–558 (2016). https://doi.org/10.1177/0954406215578704

    Article  Google Scholar 

  40. Liu, Z.X., Liu, Z.S., Li, Y., Zhang, G.H.: Dynamics response of an on-board rotor supported on modified oil-film force considering base motion. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232(2), 245–259 (2018). https://doi.org/10.1177/0954406216682052

    Article  Google Scholar 

  41. Chen, X., Gan, X.H., Ren, G.M.: Nonlinear responses and bifurcations of a rotor-bearing system supported by squeeze-film damper with retainer spring subjected to base excitations. Nonlinear Dyn. 102(4), 2143–2177 (2020). https://doi.org/10.1007/s11071-020-06052-0

    Article  Google Scholar 

  42. Szeri, A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  43. Reinhardt, E., Lund, J.W.: The influence of fluid inertia on the dynamic properties of journal bearings. J. Lubr. Technol. 97(2), 159–165 (1975). https://doi.org/10.1115/1.3452546

    Article  Google Scholar 

  44. San Andres, L.A., Vance, J.M.: Force coefficients for open-ended squeeze-film dampers executing small-amplitude motions about an off-center equilibrium position. A S L E Trans. 30(1), 69–76 (1987). https://doi.org/10.1080/05698198708981732

    Article  Google Scholar 

  45. Blackledget, J.M.: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, 2nd edn. Horwood Publishing, Chichester (2006)

    Book  Google Scholar 

  46. Young, D.M.: Convergence properties of the symmetric and unsymmetric successive overrelaxation methods and related methods. Math. Comput. 24(112), 793–807 (1970). https://doi.org/10.1090/S0025-5718-1970-0281331-4

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, X., Gan, X.H., Ren, G.M.: Dynamic modeling and nonlinear analysis of a rotor system supported by squeeze film damper with variable static eccentricity under aircraft turning maneuver. J. Sound Vib. 485, 115551 (2020). https://doi.org/10.1016/j.jsv.2020.115551

    Article  Google Scholar 

  48. Chen, X., Liao, M.F.: Transient characteristics of a dual-rotor system with intershaft bearing subjected to mass unbalance and base motions during start-up. In: Proceeding of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway. American Society of Mechanical Engineers, p V07AT33A007 (2018). https://doi.org/10.1115/GT2018-75227

Download references

Acknowledgements

Supports are gratefully acknowledged from Aerospace Propulsion Institute and Advanced Technology Institute at SUSTech. This research is also supported by Center for Computational Science and Engineering at Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ren, G. & Gan, X. Dynamic behavior of a flexible rotor system with squeeze film damper considering oil-film inertia under base motions. Nonlinear Dyn 106, 3117–3145 (2021). https://doi.org/10.1007/s11071-021-06978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06978-z

Keywords

Navigation