Skip to main content
Log in

Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present investigation, the breathers and rogue waves on the double-periodic background are successfully constructed by Darboux transformation using a plane wave seed solution. Firstly, the Darboux transformation for the reverse-space-time derivative nonlinear Schrödinger equation is constructed. Secondly, periodic solutions, breathers, double-periodic solutions, breathers on the periodic and double-periodic background are derived by n-fold Darboux transformation. Thirdly, the higher-order rogue waves on the periodic and double-periodic background are constructed by semi-degenerate Darboux transformation. In addition, the dynamic behaviors of the solutions are plotted to show some interesting new solution structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All date generated or analyzed during this study are included in this published article.

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 122–125 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zakharov, V.E.: What is Integrability? Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  3. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 79801 (1978)

    Article  Google Scholar 

  4. Olver, P.J., Sattinger, D.H.: Solitons in Physics, Mathematics, and Nonlinear Optics. Springer, New York (1990)

    Book  MATH  Google Scholar 

  5. Abrarov, R.M., Christiansen, P.L., Darmanyan, S.A., Scott, A.C., Soerensen, M.P.: Soliton propagation in three coupled nonlinear Schrödinger equations. Phys. Lett. A. 171, 298–302 (1992)

    Article  MathSciNet  Google Scholar 

  6. Yajima, T.: Derivative nonlinear Schrödinger type equations with multipe components and their solutions. J. Phys. Soc. Jpn. 64(6), 1901–1909 (1995)

    Article  MATH  Google Scholar 

  7. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Article  Google Scholar 

  8. Draper, L.: Freak ocean waves. Weather 21, 2–4 (1966)

    Article  Google Scholar 

  9. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Nature 450, 1054 (2007)

    Article  Google Scholar 

  10. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  Google Scholar 

  11. Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  MATH  Google Scholar 

  12. Li, C.Z., He, J.S., Porsezian, K.: Rogue waves of the Hirota and the Maxwell–Bloch equations. Phys. Rev. E 87, 012913 (2013)

    Article  Google Scholar 

  13. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014)

    Article  Google Scholar 

  14. Wang, L., Li, X., Qi, F.H., zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell-Bloch equations. Ann. Phys. 359, 97–114 (2015)

    Article  MATH  Google Scholar 

  15. Ling, L.M., Zhao, L.C., Yang, Z.Y., Guo, Bl.: Generation mechanisms of fundamental rogue wave spatial-temporal structure. Phys. Rev. E 96, 022211 (2017)

    Article  MathSciNet  Google Scholar 

  16. Jin, X.W., Lin, J.: Rogue wave, interaction solutions to the KMM system. J. Magn. Magn. Mater. 502, 166590 (2020)

    Article  Google Scholar 

  17. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Article  Google Scholar 

  18. Kundu, A.: Two-fold integrable hierarchy of nonholonomic deformation of the derivative nonlinear Schrödinger and the Lenells-Fokas equation. J. Math. Phys. 51, 022901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 6629–6636 (2011)

    Article  Google Scholar 

  20. Zhang, Y.S., Guo, L.J., Xu, S.W., Wu, Z.W., He, J.S.: The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. 19, 1706–1722 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, T., Chen, Y.: Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 92, 2133–2142 (2018)

    Article  Google Scholar 

  22. Mj\(phi \)lhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

  23. Lakhina, G.S., Sharma, A.S., Buchner, J.: International workshops on nonlinear waves and chaos in space plasmas-preface. Nonlinear Proc. Geophys. 11(2), 181–181 (2004)

    Article  Google Scholar 

  24. Ruderman, M.S.: DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-\(\beta \) hall plasma. J. Plasma Phys. 67, 271–276 (2002)

    Article  Google Scholar 

  25. Shan, S.A., El-Tantawy, S.A.: The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas. Phys. Plasmas 23(7), 072112 (2016)

    Article  Google Scholar 

  26. Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguide. Phys. Rev. A. 23, 1266–1270 (1981)

    Article  Google Scholar 

  27. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393–1398 (1983)

    Article  Google Scholar 

  28. Govind, P.A.: Nonlinear Fibers Optics, 3rd edn. Adademic, New York (2001)

    Google Scholar 

  29. Zeng, Y.: New factorization of the Kaup–Newell hierarchy. Physica D. 73, 171–188 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Z.X.: Parameters of darboux transformation for reduced akns, kaup-newell and pcf systems. Chinese Ann. Math. B 20, 195–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. 62, 480–488 (2016)

    Article  MATH  Google Scholar 

  32. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  33. Li, Y.S.: Soliton and Integrable System. Shanghai Sci.-Tech. Edu., Publishing House, Shanghai (1991)

    Google Scholar 

  34. Gu, C.H.: Darboux Transformation in Soliton Theory and its Geometric Applications. Shanghai Sci.-Tech. Edu., Publishing House, Shanghai (2005)

    Google Scholar 

  35. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and Their Applications. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  36. Xu, T., Li, Hj., Zhang, Hj., Li, M., Lan, S.: Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 63, 88–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, M.M., Chen, Y.: Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells system. Nonlinear Dyn. 98(3), 1781–1794 (2019)

    Article  MATH  Google Scholar 

  38. Shi, Y., Shen, S.F., Zhao, S.L.: Solutions and connections of nonlocal derivative nonlinear Schrödinger equations. Nonlinear Dyn. 95, 1257–1267 (2019)

    Article  MATH  Google Scholar 

  39. Meng, D.X., Li, K.Z.: Darboux transformation of the second-type nonlocal derivative nonlinear Schrödinger equation. Mod. Phys. Lett. B 33(10), 1950123 (2019)

    Article  Google Scholar 

  40. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equations. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  41. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139(1), 7–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, J.K.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 383(4), 328–337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  Google Scholar 

  44. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    Article  MathSciNet  Google Scholar 

  45. Zhang, G.Q., Yan, Z.Y., Chen, Y.: Novel higher-order rational solitons and dynamics of the defocusing integrable nonlocal nonlinear Schrödinger equation via the determinants. Appl. Math. Lett. 69, 113–120 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Inverse Scattering Transform for the Nonlocal Reverse Space-Time Nonlinear Schrödinger equation. Theor. Math. Phys. 196, 1241–1267 (2018)

    Article  MATH  Google Scholar 

  47. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223(1), 43–62 (2014)

    Article  Google Scholar 

  48. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955–1980 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rao, J.G., Zhang, Y.S., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey–Stewartson I equation. Nonlinearity 31(9), 4090–4107 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chen, J.B., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100, 052219 (2019)

    Article  MathSciNet  Google Scholar 

  51. Xue, B., Shen, J., Geng, X.G.: Breathers and breather-rogue waves on a periodic background for the derivative nonlinear Schrödinger equation. Phys. Scripta 95(5), 055216 (2020)

    Article  Google Scholar 

  52. Liu, Y., Li, B.: Dynamics of solitons and breathers on a periodic waves background in the nonlocal Mel’nikov equation. Nonlinear Dyn. 100(4), 3717–3731 (2020)

  53. Zhang, H.Q., Chen, F., Pei, Z.J.: Rogue waves of the fifth-order Ito equation on the general periodic travelling wave solutions background. Nonlinear Dyn. 103, 1023–1033 (2021)

    Article  Google Scholar 

  54. Sinthuja, N., Manikandan, K., Senthilvelan, M.: Rogue waves on the double-periodic background in Hirota equation. Eur. Phys. J. Plus. 136(3), 1–12 (2021)

    Article  MATH  Google Scholar 

  55. Huang, X., Ling, L.M.: Soliton solutions for the nonlocal nonlinear Schrödinger equation. Eur. Phys. J. Plus 131, 148 (2016)

    Article  Google Scholar 

  56. He, J.S., Tao, Y.S., Porsezian, K., Fokas, A.: Rogue wave management in an inhomogeneous Nonlinear Fibre with higher order effects. J. Nonlinear Math. Phys. 20, 407–419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. He, J.S., Charalampidis, E.G., Kevrekidis, P.G., Frantzeskakis, D.J.: Rogue waves in nonlinear Schrödinger models with variable coefficients: Application to Bose-Einstein condensates. Phys. Lett. A 378(56), 577–583 (2014)

    Article  MATH  Google Scholar 

  58. Zhao, L.C., Ling, L.M., Qi, J.W., Yang, Z.Y., Yang, W.L.: Dynamics of rogue wave excitation pattern on stripe phase backgrounds in a two-component Bose-Einstein condensate. Commun. Nonlinear Sci. 49, 39–47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Liu, W., Zhang, Y.S., He, J.S.: Rogue wave on a periodic background for Kaup–Newell equation. Rom. Rep. Phys. 70, 106 (2018)

    Google Scholar 

  60. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov–Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos Soliton. Fract. 120, 259–265 (2019)

    Article  MATH  Google Scholar 

  61. Randoux, S., Suret, P., Chabchoub, A., Kibler, B., El, G.: Nonlinear spectral analysis of Peregrine solitons observed in optics and in hydrodynamic experiments. Phys. Rev. E 98, 022219 (2018)

    Article  Google Scholar 

  62. Calini, A., Schober, C.M.: Characterizing JONSWAP rogue waves and their statistics via inverse spectral data. Wave Motion 71, 5 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Fan, E.G.: A Liouville integrable Hamiltonian system associated with a generalized Kaup–Newell spectral problem. Phys. A. 301, 105–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ma, W.X., Zhou, R.: A coupled AKNS-Kaup–Newell soliton hierarchy. J. Math. Phys. 40(9), 4419–4428 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lou Senyue, Fan Engui, Yan Zhenya, Peng Weiqi and Wang Minmin for their valuable comments and suggestions. This work was supported by National Natural Science Foundation of China (No.12175069), Global Change Research Program of China (No.2015CB953904) and Science and Technology Commission of Shanghai Municipality (No.18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project is supported by National Natural Science Foundation of China (No.12175069), Global Change Research Program of China (No.2015CB953904) and Science and Technology Commission of Shanghai Municipality (No.18dz2271000)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Chen, Y. Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn 106, 3437–3451 (2021). https://doi.org/10.1007/s11071-021-06953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06953-8

Keywords

Navigation