Skip to main content
Log in

Fixed-time formation tracking for multiple nonholonomic wheeled mobile robots based on distributed observer

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the distributed fixed-time formation tracking problem of multiple nonholonomic wheeled mobile robots system over directed fixed and switching topologies. Through a classical nonlinear transformation, the formation control problem is transformed into a consensus problem. New control protocols based on a distributed observer are proposed. The directed communication topology between multiple nonholonomic wheeled mobile robots is considered. Some sufficient conditions of multiple robots achieving the desired formation shape are given. All follower robots can form the desired formation shape within a fixed settling time and make the leader in the geometric center of the formation. By adopting graph theory and fixed-time stability theory, an upper bound of settling time that is independent of the system’s initial states is obtained. Finally, two examples are presented to illustrate the correctness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Data availability statement

No data were used to support this study.

References

  1. Cheng, L., Wang, Y., Ren, W., et al.: Containment control of multiagent systems with dynamic leaders based on a \( PI^{n} \)-type approach. IEEE Trans. Cybern. 46(12), 3004–3017 (2015)

    Article  Google Scholar 

  2. Dong, X., Yu, B., Shi, Z., et al.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2014)

    Article  Google Scholar 

  3. Sarkar, S., Kar, I.N.: Formation of multiple groups of mobile robots: multi-timescale convergence perspective. Nonlinear Dyn. 85(4), 2611–2627 (2016)

    Article  MathSciNet  Google Scholar 

  4. Wang, J.L., Wu, H.N., Huang, T., et al.: Passivity analysis of coupled reaction-diffusion neural networks with Dirichlet boundary conditions. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2148–2159 (2016)

    Article  Google Scholar 

  5. Wang, Y., Lei, Y., Bian, T., Guan, Z.: Distributed control of nonlinear multi-agent systems with unknown and nonidentical control directions via event-triggered communication[J]. IEEE Trans. Cybern. 50(5), 1820–1832 (2020)

    Article  Google Scholar 

  6. Das, A.K., Fierro, R., Kumar, V., et al.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  7. Peng, Z., Wen, G., Rahmani, A., et al.: Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013)

    Article  Google Scholar 

  8. Shojaei, K.: Output-feedback formation control of wheeled mobile robots with actuators saturation compensation. Nonlinear Dyn. 89(4), 2867–2878 (2017)

    Article  MathSciNet  Google Scholar 

  9. Liu, Z., Yu, X., Guan, Z., Hu, B., Li, C.: Pulse-modulated intermittent control in consensus of multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 47(5), 783–793 (2017)

    Article  Google Scholar 

  10. Li, Y., Tang, C., Peeta, S., Wang, Y.: Nonlinear consensus based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays[J]. IEEE Trans. Intell. Transp. Syst. 20(6), 2209–2219 (2019)

    Article  Google Scholar 

  11. Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers[J]. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  12. Wang, Y., Liu, X., Xiao, J., Shen, Y.: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control[J]. Automatica 93, 26–32 (2018)

    Article  MathSciNet  Google Scholar 

  13. Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual structures[J]. Auton. Robot. 4(4), 387–403 (1997)

    Article  Google Scholar 

  14. Chu, X., Peng, Z., Wen, G., et al.: Decentralised consensus-based formation tracking of multiple differential drive robots[J]. Int. J. Control 90(11), 2461–2470 (2017)

    Article  MathSciNet  Google Scholar 

  15. Peng, Z., Wen, G., Yang, S., et al.: Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network[J]. Nonlinear Dyn. 86(1), 605–622 (2016)

    Article  MathSciNet  Google Scholar 

  16. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  17. Olfati-Saber, R.: Ultrafast consensus in small-world networks. In: Proceedings of the 2005 American Control Conference, June 8–10, 2005. Portland, OR, USA, 2005, pp. 2371–2378

  18. Du, H., Jiang, C., Wen, G., et al.: Current sharing control for parallel DCCDC buck converters based on finite-time control technique. IEEE Trans. Industr. Inf. 15(4), 2186–2198 (2018)

    Article  Google Scholar 

  19. Du, H., Zhu, W., Wen, G., et al.: Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE Trans. Cybern. 49(1), 342–353 (2017)

    Article  Google Scholar 

  20. Xiao, B., Hu, Q., Zhang, Y.: Finite-time attitude tracking of spacecraft with fault-tolerant capability. IEEE Trans. Control Syst. Technol. 23(4), 1338–1350 (2014)

    Article  Google Scholar 

  21. Zhao, Y., Duan, Z., Wen, G.: Finite-time consensus for second-order multi-agent systems with saturated control protocols. IET Control Theory Appl. 9(3), 312–319 (2014)

    Article  MathSciNet  Google Scholar 

  22. Du, H., Wen, G., Cheng, Y., et al.: Distributed finite-time cooperative control of multiple high-order nonholonomic mobile robots. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2998–3006 (2016)

    Article  MathSciNet  Google Scholar 

  23. Du, H., Wen, G., Yu, X., et al.: Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica 62, 236–242 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ni, J., Liu, L., Liu, C., et al.: Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems[J]. Nonlinear Dyn. 89(3), 2065–2083 (2017)

    Article  MathSciNet  Google Scholar 

  25. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zhang, B., Jia, Y.: Fixed-time consensus protocols for multi-agent systems with linear and nonlinear state measurements. Nonlinear Dyn. 82(4), 1683–1690 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wang, C., Tnunay, H., Zuo, Z., et al.: Fixed-time formation control of multirobot systems: design and experiments. IEEE Trans. Industr. Electron. 66(8), 6292–6301 (2018)

    Article  Google Scholar 

  28. Hong, H., Yu, W., Wen, G, et al.: Distributed robust fixed-time consensus in multi-agent systems with nonlinear dynamics and uncertain disturbances 2016. In: IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016, pp. 1390-1395

  29. Chu, X., Peng, Z., Wen, G., et al.: Robust fixed-time consensus tracking with application to formation control of unicycles. IET Control Theory Appl. 12(1), 53–59 (2017)

    Article  MathSciNet  Google Scholar 

  30. Dong, W.: Flocking of multiple mobile robots based on backstepping. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41(2), 414–424 (2010)

    Article  Google Scholar 

  31. Zhang, X., Peng, Z., Yang, S., et al.: Distributed fixed-time consensus-based formation tracking for multiple nonholonomic wheeled mobile robots under directed topology. Int. J. Control, pp.1–10 (2019)

  32. Sun, F., Liu, P., Li, H., Zhu, W.: Fixed-time consensus of heterogeneous multi-agent systems based on distributed observer. Int. J. Syst. Sci. 52(9), 1780–1789 (2021)

    Article  MathSciNet  Google Scholar 

  33. Lopez-Ramirez, F., Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time observer design: implicit lyapunov function approach. Automatica 87, 52–60 (2018)

    Article  MathSciNet  Google Scholar 

  34. Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    Article  MathSciNet  Google Scholar 

  35. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Autom. Control 38(5), 700–716 (1993)

    Article  MathSciNet  Google Scholar 

  36. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ning, B., Han, Q.: Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans. Autom. Control 64(4), 1686–1693 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zuo, Z., Tian, B., Defoort, M., et al.: Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 63(2), 563–570 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants Nos. 61503053, 61673080 and 61773082), the Natural Science Funds of Chongqing CSTC (Grant No. cstc2019jcyj-msxmX0102), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202000601), the Venture and Innovation Support Program for Chongqing Overseas Returnees (Grant No. cx2017099), and JK was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” (Grant No. 075-15-2020-926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Li, H., Zhu, W. et al. Fixed-time formation tracking for multiple nonholonomic wheeled mobile robots based on distributed observer. Nonlinear Dyn 106, 3331–3349 (2021). https://doi.org/10.1007/s11071-021-06946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06946-7

Keywords

Navigation