Skip to main content
Log in

Sliding mode vibration control of an Euler–Bernoulli beam with unknown external disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the stabilization problem of an Euler–Bernoulli beam system subject to an unknown time-varying distributed load and boundary disturbance. Based on Lagrangian–Hamiltonian mechanics, the model of the beam system is derived as a partial differential equation. Based on Lyapunov functions, a sliding surface is designed, on which the system exhibits exponential bounded stability and robustness against the external disturbances. A sliding mode controller which only uses boundary information is further proposed to drive the system to reach the sliding surface in finite time. Numerical simulations are shown to illustrate the validity of the proposed boundary control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Abbreviations

L :

Length of the beam

m :

Mass of the payload

\(E_{\text {I}}\) :

Bending stiffness of the beam

T :

Tension of the beam

\(\rho \) :

Uniform mass per unit length of the beam

w(xt):

Displacement of the beam at the position x for the time t

f(xt):

Time-varying distributed load on the beam except end point

u(t):

Boundary control force at the end of the beam

d(t):

Boundary input disturbance force at the end of the beam

\(C^1\) :

Continuously differentiable function space

\(R^+\) :

The sets of positive real numbers

References

  1. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Guo, F., Liu, Y., Wu, Y., Luo, F.: Observer-based backstepping boundary control for a flexible riser system. Mech. Syst. Sig. Process. 111, 314–330 (2018)

    Article  Google Scholar 

  3. He, W., Zhang, S.: Control design for nonlinear flexible wings of a robotic aircraft. ISA Trans. 25(1), 351–357 (2016)

    Google Scholar 

  4. Liu, Z.J., Liu, J.K.: Boundary control of a flexible robotic manipulator with output constraints. Asian J. Control 19(1), 332–345 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. He, W., He, X.Y., Zou, M.F., Li, H.Y.: PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans. Control Syst. Technol. 27(2), 790–797 (2019)

    Article  Google Scholar 

  6. Chen, G., Delfour, M.C., Krall, A.M., Payre, G.: Modeling, stabilization and control of serially connected beams. SIAM J. Control Optim. 25(3), 526–546 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, Z.H., Kitamura, N., Guo, B.Z.: Shear force feedback control of flexible robot arms. IEEE Trans. Robotics Autom. 11(5), 760–765 (1995)

    Article  Google Scholar 

  8. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  MATH  Google Scholar 

  9. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM (2008)

  10. Smyshlyaev, A., Guo, B.Z., Krstic, M.: Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback. IEEE Trans. Autom. Control 54(5), 1134–1140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karagiannis, D., Radisavlejevic-Gajic, V.: Sliding mode boundary control for an Euler-Bernoulli beam with boundary disturbances and parameter variations. In 2014 American Control Conference, pp. 4536–4542 (2014)

  12. Karagiannis, D., Radisavljevic-Gajic, V.: Sliding mode boundary control of an Euler-Bernoulli beam subject to disturbances. IEEE Trans. Autom. Control 63(10), 3442–3448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, D., Jiang, B., Yang, H., Tao, G.: A backstepping-based fault compensation schemefor a class of Euler-Bernoulli beam-ODE cascadesystems. Int. J. Control 94(8), 2072–2084 (2019)

    Article  MATH  Google Scholar 

  14. Ge, S.S., Zhang, S., He, W.: Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance. Int. J. Control 84(5), 947–960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Y., Zhan, W.K., Gao, H.L., Liu, H.M.: Vibration suppression of an Euler-Bernoulli beam by backstepping iterative learning control. IET Control Theory Appl. 13(16), 2630–2637 (2019)

  16. He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Indus. Electron. 62(8), 5023–5030 (2015)

    Article  Google Scholar 

  17. Jin, F.F., Guo, B.Z.: Lyapunov approach to output feedback stabilization for the Euler-Bernoulli beam equation with boundary input disturbance. Automatica 52, 95–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, X.Y., Song, Y.H., Han, Z.J., Zhang, S., Jing, P., Qi, S.W.: Adaptive inverse backlash boundary vibration control design for an Euler-Bernoulli beam system. J. Franklin Inst. 357(6), 3434–3450 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Z.J., Liu, J.K., He, W.: Boundary control of an Euler-Bernoulli beam with input and output restrictions. Nonlinear Dyn. 92(2), 531–541 (2018)

    Article  MATH  Google Scholar 

  20. Ji, N., Liu, Z.J., Liu, J.K., He, W.: Vibration control for a nonlinear three-dimensional Euler-Bernoulli beam under input magnitude and rate constraints. Nonlinear Dyn. 92(4), 2551–2570 (2018)

    Article  Google Scholar 

  21. Ji, N., Liu, J.K.: Adaptive actuator fault-tolerant control for a three-dimensional Euler-Bernoulli beam with output constraints and uncertain end load. J. Franklin Inst. 356(7), 3869–3898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mathew, N.J., Rao, K.K., Sivakumaran, N.: Swing up and stabilization control of a rotary inverted pendulum. IFAC Proc. Vol. 46(32), 654–659 (2013)

    Article  Google Scholar 

  23. Baek, J., Jin, M., Han, S.: A new adaptive sliding mode control scheme for application to robot manipulators. IEEE Trans. Indus. Electron. 63(6), 3628–3637 (2016)

    Article  Google Scholar 

  24. Orlov, Y.V., Utkin, V.I.: Use of sliding modes in distributed system control problems. Autom. Remote Contr. 43(9), 1127–1135 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Levaggi, L.: Infinite dimensional systems’ sliding motions. In 2001 European Control Conference (ECC), pp. 3789–3793 (2001)

  26. Cheng, M.B., Radisavljevic, V., Su, W.C.: Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica 47(2), 381–387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Xu, G.: Stabilization of an Euler-Bernoulli beam with a tip mass under the unknown boundary external disturbances. J. Syst. Sci. Complex. 30(4), 803–817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, F., Jia, Y.: Boundary sliding mode control approach to a one-link flexible beam contact force problem with boundary input disturbances. In 2017 36th Chinese Control Conference (CCC), pp. 1573–1578 (2017)

  29. Guo, B.Z., Jin, F.F.: The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance. Automatica 49(9), 2911–2918 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rahn, C.D., Rahn, C.D.: Mechatronic Control of Distributed Noise and Vibration. Springer, New York (2001)

  31. De Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., Zhang, F.: Lyapunov Based Control of Mechanical Systems. Birkhaüser, Boston (2000)

    Book  MATH  Google Scholar 

  32. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1978)

    Google Scholar 

  33. Zhao, Z.J., Liu, Z.J., Li, Z.F., Wang, N., Yang, J.F.: Control design for a vibrating flexible marine riser system. J. Franklin Inst. 354(18), 8117–8133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, W., Görges, D. et al. Sliding mode vibration control of an Euler–Bernoulli beam with unknown external disturbances. Nonlinear Dyn 110, 1393–1404 (2022). https://doi.org/10.1007/s11071-021-06921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06921-2

Keywords

Navigation