Skip to main content
Log in

Controlling an uncertain mobile robot with prescribed performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Uncertain mobile robot (UMR) has been playing an increasingly important role in modern industry. Implementing motion control of UMR is a critical and challenging problem due to the uncertainty. This study investigates the tracking control problem of UMR with prescribed transient and steady-state performance, in which uncertainty is (possibly fast) time-varying, bounded but with unknown bounds, and includes mismatched portions, i.e., not all the uncertainties are within the range space of the input matrix. The control is designed via constraint-following, i.e., formulating the tracking goals as servo constraints. Therefore, the system performance is indexed by the constraint-following error and the desired transient and steady state performance specifications are imposed on the constraint-following error. By a state transformation technique incorporating the prescribed performance, we are able to design a class of adaptive robust controls rendering the system motion to approximately follow the servo constraints with the prescribed performance satisfied, in which an adaptive law is constructed to emulate the unknown uncertainty bounds. The control is approximation-free and does not assume mismatched uncertainties to be sufficiently small, thus can tolerate large mismatched uncertainties. The effectiveness of the proposed approach is illustrated by rigorous proof and the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ceccarelli, M., Glazunov, V.A.: Advances on Theory and Practice of Robots and Manipulators: Proceedings of Romansy 2014 XX CISM- IFToMM Symposium on Theory and Practice of Robots and Manipulators. Springer, Cham (2014)

  2. Mora, A., Glas, D.F., Kanda, T., et al.: A teleoperation approach for mobile social robots incorporating automatic gaze control and three-dimensional spatial visualization. IEEE T. Syst. Man Cy A 43(3), 630–642 (2013)

    Article  Google Scholar 

  3. Zheng, K., Glas, D.F., Kanda, T., et al.: Designing and implementing a human-robot team for social interactions. IEEE T. Syst. Man Cy A 43(4), 843–859 (2013)

    Article  Google Scholar 

  4. Li, Z., Deng, J., Lu, R., et al.: Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE T. Syst. Man Cy A 46(6), 740–749 (2016)

    Article  Google Scholar 

  5. Cheng, Y., Jia, R., Du, H., et al.: Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. Int. J. Robust Nonlin. 28(6), 2082–2096 (2018)

    Article  MathSciNet  Google Scholar 

  6. Xin, L., Wang, Q., She, J., et al.: Robust adaptive tracking control of wheeled mobile robot. Robot. Auton. Syst. 78, 36–48 (2016)

    Article  Google Scholar 

  7. Alakshendra, V., Alakshendra, V., Chiddarwar, S.S., et al.: Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn. 87(4), 2147–2169 (2017)

    Article  MathSciNet  Google Scholar 

  8. Matraji, I., Al-Durra, A., Haryono, A., et al.: Trajectory tracking control of Skid-Steered mobile robot based on adaptive second order sliding mode control. Control Eng. Pract. 72, 167–176 (2018)

    Article  Google Scholar 

  9. Cui, M., Liu, W., Liu, H., et al.: Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 83(1–2), 667–683 (2016)

    Article  MathSciNet  Google Scholar 

  10. Mohareri, O., Dhaouadi, R., Rad, A.B.: Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing (Amsterdam) 88, 54–66 (2012)

    Article  Google Scholar 

  11. Hendzel, Z.: Hamilton-Jacobi inequality robust neural network control of a mobile wheeled robot. Math. Mech. Solids 24(3), 723–737 (2019)

    Article  MathSciNet  Google Scholar 

  12. Huang, C., Wang, W., Chiu, C.: Design and implementation of fuzzy control on a two-wheel inverted pendulum. IEEE T. Ind. Electron. 58(7), 2988–3001 (2011)

    Article  Google Scholar 

  13. Chwa, D.: Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE T. Fuzzy Syst. 20(3), 587–593 (2012)

    Article  Google Scholar 

  14. Xu, J., Guo, Z.Q., Lee, T.H.: Design and implementation of a Takagi-Sugeno-Type fuzzy logic controller on a two-wheeled mobile robot. IEEE T. Ind. Electron. 60(12), 5717–5728 (2013)

    Article  Google Scholar 

  15. Qian, D., Tong, S., Guo, J., et al.: Leader-follower-based formation control of nonholonomic mobile robots with mismatched uncertainties via integral sliding mode. P. I. Mech. Eng. Part I. J. Syst. 229(6), 559–569 (2015)

    Google Scholar 

  16. Dong, F., Han, J., Chen, Y.: Improved robust control for multi-link flexible manipulator with mismatched uncertainties. International Conference on Fluid Power and Mechatronics, Harbin, China, August (2015)

  17. Kayacan, E.: Closed-loop error learning control for uncertain nonlinear systems with experimental validation on a mobile robot. IEEE-ASME T. Mech. 24(5), 2397–2405 (2019)

    Article  Google Scholar 

  18. Ovalle, L., Ríos, H., Llama, M., et al.: Omnidirectional mobile robot robust tracking: sliding-mode output-based control approaches. Control Eng. Pract. 85, 50–58 (2019)

    Article  Google Scholar 

  19. Sun, H., Yang, L., Chen, Y. H.: Constraint-Based Control Design for Uncertain Underactuated Mechanical System: Leakage-Type Adaptation Mechanism. IEEE T. Syst. Man Cy A. pp. 1–12 (2020)

  20. Yin, H., Chen, Y., Huang, J., et al.: Tackling mismatched uncertainty in robust constraint-following control of underactuated systems. Inf. sci. 520, 337–352 (2020)

    Article  MathSciNet  Google Scholar 

  21. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE T. Automat. Contr. 53(9), 2090–2099 (2008)

    Article  MathSciNet  Google Scholar 

  22. Bechlioulis, C.P., Rovithakis, G.A.: Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE T. Automat. Contr. 55(5), 1220–1226 (2010)

    Article  MathSciNet  Google Scholar 

  23. Bechlioulis, C.P., Rovithakis, G.A.: Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities. IEEE T. Automat. Contr. 56(9), 2224–2230 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wang, W., Huang, J., Wen, C.: Prescribed performance bound-based adaptive path-following control of uncertain nonholonomic mobile robots. Int. J. Adapt. Contr. 31(5), 805–822 (2017)

    Article  MathSciNet  Google Scholar 

  25. Dai, S., He, S., Chen, X., et al.: Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance. IEEE T. Ind. Inform. 16(6), 3662–3671 (2020)

    Article  Google Scholar 

  26. Park, B.S.: Prescribed performance function based control for trajectory tracking of nonholonomic mobile robots with collision avoidance. IEEE Conference on Control Technology and Applications, Kohala Coast, USA, August (2017)

  27. Elhaki, O., Shojaei, K.: Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance. Ocean Eng. 167, 239–256 (2018)

    Article  Google Scholar 

  28. Li, J., Du, J., Sun, Y., Lewis, F.L.: Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance. Int. J Robust Nonlin. 29(14), 4629–4643 (2019)

    Article  MathSciNet  Google Scholar 

  29. Ming, C., Sun, R., Zhu, B.: Nonlinear fault-tolerant control with prescribed performance for air-breathing supersonic missiles. J. Spacecraft Rockets 54(5), 1092–1099 (2017)

    Article  Google Scholar 

  30. Lyu, S., Yan, X., Tang, S.: Prescribed performance interceptor guidance with terminal line of sight angle constraint accounting for missile autopilot lag. Aerosp. Sci Technol. 69, 171–180 (2017)

    Article  Google Scholar 

  31. Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49(5), 1137–1147 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yin, H., Chen, Y., Yu, D.: Controlling an underactuated two-wheeled mobile robot: a constraint-following approach. J. Dyn. Syst-T ASME 141(7), 071002 (2019)

    Article  Google Scholar 

  33. Chen, Y.: Constraint-following servo control design for mechanical systems. J. Vib. control 15(3), 369–389 (2009)

    Article  MathSciNet  Google Scholar 

  34. Qin, W., Shangguan, W., Yin, H., et al.: Constraint-following control design for active suspension systems. Mech. Syst. Signal Process. 154, 107578 (2021)

    Article  Google Scholar 

  35. Kalaba, R., Udwadia, F.: Analytical dynamics with constraint forces that do work in virtual displacements. Appl. Math. Comput. 121(2), 211–217 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    Article  MathSciNet  Google Scholar 

  37. Acosta, J.A., Doria-Cerezo, A., Fossas, E.: Diffeomorphism-based control of nonlinear systems subject to state constraints with actual applications. IEEE Conference on Control Applications, Juan Les Antibes, France, October (2014)

  38. Kimura, S., Nakamura, H., Ibuki, T., Sampei, M.: Revived Transformation for nonlinear systems subject to state constraints. IEEE Conference on Decision and Control, Osaka, Japan, December (2015)

  39. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Automat. 16(5), 609–615 (2000)

    Article  Google Scholar 

  40. Sun, H., Zhao, H., Zhen, S., et al.: Application of the Udwadia-Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83(1), 389–400 (2016)

    Article  MathSciNet  Google Scholar 

  41. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE T. Automat. Contr. 26(5), 1139–1144 (1981)

    Article  MathSciNet  Google Scholar 

  42. Pazderski, D.: Waypoint following for differentially driven wheeled robots with limited velocity perturbations: asymptotic and practical stabilization using transverse function approach. J. Intell. Robot. Syst. 85(3), 553–575 (2017)

    Article  Google Scholar 

  43. Zhao, R.Y., Chen, Y.H., Jiao, S.: Optimal design of constraint-following control for fuzzy mechanical systems. IEEE T. Fuzzy Syst. 24(5), 1108–1120 (2016)

    Article  Google Scholar 

  44. Chen, Y.H.: Performance analysis of controlled uncertain systems. Dyn. control 6(2), 131–142 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The paper is supported by the Open Funds of State Key Laboratory of Advanced Design, Manufacturing for Vehicle Body, Hunan University (No.31915002) and the National Natural Science Foundation of China (Grant No. 52105096), the GuangDong Basic and Applied Basic Research Foundations, China (Grant Nos. 2021A1515011752 and 2020A1515110769), China-Japan Science and Technology Joint Committee of the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2017YFE0128400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Huang, J. & Yin, H. Controlling an uncertain mobile robot with prescribed performance. Nonlinear Dyn 106, 2347–2362 (2021). https://doi.org/10.1007/s11071-021-06899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06899-x

Keywords

Navigation