Skip to main content

Energy shaping dynamic tube-MPC for underactuated mechanical systems

Abstract

This work investigates the tracking control problem for underactuated mechanical systems. To this end, we develop an extension of the dynamic tube Model Predictive Control (MPC) approach by combining an MPC design, an ancillary energy shaping controller constructed with the Interconnection and Damping Assignment Passivity-Based Control methodology, and an analytical expression of the dynamic tube. In addition, we extend the proposed approach by including the adaptive compensation of a class of unknown disturbances. The stability analysis is presented by employing a Lyapunov approach. The effectiveness of the proposed controller is demonstrated with simulations on two underactuated systems: a two-mass-spring-damper system with uncertain damping and either linear or nonlinear spring; an inertia-wheel-pendulum with unmodeled disturbances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Availability of data and material

Not applicable.

References

  1. Allgower, F., Findeisen, R., Nagy, Z.K.: Nonlinear model predictive control: from theory to application. J. Chin. Inst. Chem. Eng. 35(3), 299–315 (2004)

    Google Scholar 

  2. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astolfi, A., Ortega, R.: Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Control 48(4), 590–606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastos, G.: A synergistic optimal design for trajectory tracking of underactuated manipulators. J. Dyn. Syst. Meas. Control 141(2), 021015 (2018)

    Article  Google Scholar 

  5. Bastos, G.: A stable reentry trajectory for flexible manipulators. Int. J. Control 94(5), 1297–1308 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bastos, G., Brüls, O.: Analysis of open-loop control design and parallel computation for underactuated manipulators. Acta Mech. 231, 2439–2456 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bastos, G., Seifried, R., Brüls, O.: Analysis of stable model inversion methods for constrained underactuated mechanical systems. Mech. Mach. Theory 111, 99–117 (2017)

    Article  Google Scholar 

  8. Berger, T., Otto, S., Reis, T., Seifried, R.: Combined open-loop and funnel control for underactuated multibody systems. Nonlinear Dyn. 95, 1977–98 (2020)

    Article  MATH  Google Scholar 

  9. Berger, T., Drücker, S., Lanza, L., Reis, T., Seifried, R.: Tracking control for underactuated non-minimum phase multibody systems. Nonlinear Dyn. 104(4), 3671–3699 (2021)

    Article  Google Scholar 

  10. Biegler, L.T.: Efficient solution of dynamic optimization and NMPC problems. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear model predictive control, pp. 219–243. Birkhäuser, Basel (2000)

    Chapter  Google Scholar 

  11. Blauwkamp, R., Basar, T.: Receding-horizon approach to robust output feedback control for nonlinear systems. Proc IEEE Conf Decis Control 5, 4879–4884 (1999)

    Google Scholar 

  12. Brüls, O., Bastos, G., Seifried, R.: A stable inversion method for constrained feedforward control of flexible multibody systems. J. Comput. Nonlinear Dyn. 9, 011014 (2014)

    Article  Google Scholar 

  13. Chen, C., Shaw, L.: On receding horizon feedback control. Automatica 18(3), 349–352 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, H., Allgower, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chernousko, F.L., Bolotnik, N.N., Gradetsky, V.: Manipulation Robots—Dynamics, Control and Optimizational. CRC Press, Boca Raton (1994)

    Google Scholar 

  16. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. ASME J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diehl, M., Bock, H.G., Schloder, J.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J. Control Optim. 43(5), 1714–1736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of real-time iteration scheme for nonlinear model predictive control. IEE Proc. Control Theory Appl. 152, 296–308 (2005)

    Article  Google Scholar 

  19. Dong, Z., Angeli, D.: Homothetic tube-based robust offset-free economic model predictive control. Automatica 119, 109105 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. El-Ferik, S.: RMPC for uncertain nonlinear systems with non-additive dynamic disturbances and noisy measurements. IEEE Access 8, 44846–44857 (2020)

    Article  Google Scholar 

  21. Fesharak, S.J., Kamali, M., Sheikholeslam, F., Talebi, H.A.: Robust model predictive control with sliding mode for constrained non-linear systems. IET Control Theory Appl. 14, 2592–2599 (2020)

    Article  Google Scholar 

  22. Franco, E.: Discrete-time IDA-PBC for underactuated mechanical systems with input-delay and matched disturbances. In: 26th Mediterranean Conference on Control and Automation, Zadar, pp. 747–752. IEEE (2018)

  23. Franco, E.: Immersion and invariance adaptive control for discrete-time systems in strict-feedback form with input delay and disturbances. Int. J. Adapt. Control Signal Process. 32(1), 69–82 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Franco, E.: Adaptive IDA-PBC for underactuated mechanical systems with constant disturbances. Int. J. Adapt. Control Signal Process. 33(1), 1–15 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Franco, E., Garriga-Casanovas, A.: Energy-shaping control of soft continuum manipulators with in-plane disturbances. Int. J. Robot. Res. 40(1), 236–255 (2021)

    Article  Google Scholar 

  26. Franco, E., Garriga Casanovas, A., Donaire, A.: Energy shaping control with integral action for soft continuum manipulators. Mech. Mach. Theory 158, 104250 (2021)

    Article  Google Scholar 

  27. Franco, E., Rodriguez y Baena, F., Astolfi, A.: Robust dynamic state feedback for underactuated systems with linearly parameterized disturbances. Int. J. Robust Nonlinear Control 30(10), 4112–4128 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gómez-Estern, F., Van der Schaft, A.J.: Physical damping in IDA-PBC controlled underactuated mechanical systems. Eur. J. Control 10(5), 451–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gritli, H., Khraief, N., Chemori, A., Belghith, S.: Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dyn. 89(3), 2195–2226 (2017)

    Article  MathSciNet  Google Scholar 

  30. Grüne, L., Baillieul, J., Samad, T.: Nominal Model-Predictive Control, pp. 1–6. Springer, London (2019)

    Google Scholar 

  31. Grune, L., Pannek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  32. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)

    Book  MATH  Google Scholar 

  33. Korayem, M.H., Nohooji, H.R.: Trajectory optimization of flexible mobile manipulators using open-loop optimal control method. LNCS Lect. Notes Comput. Sci. 5314, 54–63 (2008)

    Article  Google Scholar 

  34. Liu, H., Chen, G.: Robust trajectory tracking control of marine surface vessels with uncertain disturbances and input saturations. Nonlinear Dyn. 100, 3513–28 (2020)

    Article  Google Scholar 

  35. Liu, P., Yu, H., Cang, S.: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbancesl. Nonlinear Dyn. 98, 1447–64 (2019)

    Article  Google Scholar 

  36. Lopez, B.T., Slotine, J.E., How, J.P.: Dynamic tube MPC for nonlinear systems. In: 2019 American Control Conference (ACC), pp. 1655–1662. IEEE (2019)

  37. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding horizon control via inverse optimality. Syst. Control Lett. 32(4), 241–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mayne, D.Q.: Model predictive control: recent developments and future promise. Automatica 50(12), 2967–2986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mayne, D.Q.: Competing methods for robust and stochastic MPC. IFAC Pap. Online 51(20), 169–174 (2018)

    Article  Google Scholar 

  40. Mayne, D.Q., Kerrigan, E.C., van Wyk, E.J., Falugi, P.: Tube-based robust nonlinear model predictive control. Int. J. Robust Nonlinear Control 21(11), 1341–1353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrainerd model predictive control: stability and control. Automatica 36, 789–814 (2000)

    Article  MATH  Google Scholar 

  42. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. 85, 67–94 (1959)

    Google Scholar 

  43. Nikou, A., Dimarogonas, D.V.: Decentralized tube-based model predictive control of uncertain nonlinear multiagent systems. Int. J. Robust Nonlinear Control 29(10), 2799–2818 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Prado, Á.J., Torres-Torriti, M., Yuz, J., Auat Cheein, F.: Tube-based nonlinear model predictive control for autonomous skid-steer mobile robots with tire-terrain interactions. Control Eng. Pract. 101, 104451 (2020)

    Article  Google Scholar 

  46. Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Eur. J. Control 27, 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  48. Scokaert, P., Rawlings, J.: Stability of model predictive control under perturbations. In: IFAC Proceedings, vol 12, pp 19–24 (1995)

  49. Sebghati, A., Shamaghdari, S.: Tube-based robust economic model predictive control with practical and relaxed stability guarantees and its application to smart grid. Int. J. Robust Nonlinear Control 30(17), 7533–7559 (2020)

    Article  MathSciNet  Google Scholar 

  50. Seifried, R.: Dynamics of Underactuated Multibody System. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  51. Yaghmaei, A., Yazdanpanah, M.J.: Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica 83, 331–336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yi, B., Ortega, R., Manchester, I.R., Siguerdidjane, H.: Path following of a class of underactuated mechanical systems via immersion and invariance-based orbital stabilization. Int. J. Robust Nonlinear Control 30(18), 8521–8544 (2020)

    Article  MathSciNet  Google Scholar 

  53. Yu, S., Maier, C., Chen, H., Allgöwer, F.: Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Syst. Control Lett. 62(2), 194–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, A., Yang, C., Gong, S., Qiu, J.: Nonlinear stabilizing control of underactuated inertia wheel pendulum based on coordinate transformation and time-reverse strategy. Nonlinear Dyn. 84(4), 2467–2476 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, P., Meng, Y., Wu, Z., Tan, M., Yu, J.: Nonlinear model predictive position control for a tail-actuated robotic fish. Nonlinear Dyn. 101, 2235–47 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the “Fundação de Amparo à Ciência e Tecnologia de Pernambuco” for the research support in Pernambuco (Brazil) through the project APQ-1226-3.05/15. The second author was supported by the UK Engineering and Physical Sciences Research Council (Grant Number EP/R009708/1 and EP/R511547/1).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guaraci Bastos Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bastos, G., Franco, E. Energy shaping dynamic tube-MPC for underactuated mechanical systems. Nonlinear Dyn 106, 359–380 (2021). https://doi.org/10.1007/s11071-021-06863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06863-9

Keywords

  • Underactuated systems
  • Port-Hamiltonian systems
  • Robust control
  • IDA-PBC
  • Dynamic tube-MPC