Skip to main content
Log in

An effective multi-channel fault diagnosis approach for rotating machinery based on multivariate generalized refined composite multi-scale sample entropy

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fault diagnosis of critical rotating machinery components is necessary to ensure safe operation. However, the commonly used rotating machinery fault diagnosis methods are generally based on the single-channel signal processing method, which is not suitable for processing multi-channel signals. Thus, to extract features and carry out the intelligent diagnosis of multi-channel signals, a novel method for rotating machinery fault diagnosis is proposed. Firstly, a novel nonlinear dynamics technique named the multivariate generalized refined composite multi-scale sample entropy was presented and applied to extract fusion entropy features of multi-channel signals. Secondly, a practical manifold learning known as supervised isometric mapping was introduced to map the high-dimensional fusion entropy features in a low-dimensional space. In a third step, the Harris hawks optimization-based support vector machine was applied to carry out the intelligent fault recognition. Finally, aiming to verify the effectiveness of the proposed method and present its advantages, it was applied to analyze the rotating machinery system bearing and gear data. The experimental results have shown that the method at hand can accurately identify various faults in both the bearings and gears. Furthermore, in addition to being suitable for multi-channel signal fault diagnosis, it had higher recognition accuracy compared to other multi-channel or single-channel methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Prabith, K., Praveen Krishna, I.R.: The numerical modeling of rotor-stator rubbing in rotating machinery: a comprehensive review. Nonlinear Dyn. 101, 1317–1363 (2020). https://doi.org/10.1007/s11071-020-05832-y

    Article  Google Scholar 

  2. Zheng, J., Pan., H.: Use of generalized refined composite multiscale fractional dispersion entropy to diagnose the faults of rolling bearing. Nonlinear Dyn. 101, 1417–1440 (2020) https://doi.org/10.1007/s11071-020-05821-1

  3. Li, X., Li, J., Zhao, C., Qu, Y., He, D.: Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection. Mech. Syst. Signal Process. 142, 106740 (2020). https://doi.org/10.1016/j.ymssp.2020.106740

    Article  Google Scholar 

  4. Pang, S., Yang, X., Zhang, X., Lin, X.: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features. ISA Trans. 98, 320–337 (2020). https://doi.org/10.1016/j.isatra.2019.08.053

    Article  Google Scholar 

  5. Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., Nandi, A.K.: Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 138, 106587 (2020). https://doi.org/10.1016/j.ymssp.2019.106587

    Article  Google Scholar 

  6. Xue, Y., Dou, D., Yang, J.: Multi-fault diagnosis of rotating machinery based on deep convolution neural network and support vector machine. Measurement 156, 107571 (2020). https://doi.org/10.1016/j.measurement.2020.107571

    Article  Google Scholar 

  7. Zhao, B., Zhang, X., Li, H., Yang, Z.: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions. Knowl. Based Syst. 199, 105971 (2020). https://doi.org/10.1016/j.knosys.2020.105971

    Article  Google Scholar 

  8. Zhang, Z., Li, S., Lu, J., Wang, J., Jiang, X.: A novel intelligent fault diagnosis method based on fast intrinsic component filtering and pseudo-normalization. Mech. Syst. Signal Process. 145, 106923 (2020). https://doi.org/10.1016/j.ymssp.2020.106923

    Article  Google Scholar 

  9. Li, Y., Wang, S., Deng, Z.: Intelligent fault identification of rotary machinery using refined composite multi-scale Lempel–Ziv complexity. J. Manuf. Syst. (2020) (in Press) https://doi.org/10.1016/j.jmsy.2020.05.004

  10. Wu, Y., Jiang, P., Ding, C., Feng, F., Chen, T.: Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network. Comput. Ind. 108, 53–61 (2019). https://doi.org/10.1016/j.compind.2018.12.001

    Article  Google Scholar 

  11. Zhao, X., Jia, M., Ding, P., Yang, C., She, D., Liu, Z.: Intelligent fault diagnosis of multi-channel motor-rotor system based on multi-manifold deep extreme learning machine. IEEE/ASME Trans. Mechatron. 25(5), 2177–2187 (2020). https://doi.org/10.1109/TMECH.2020.3004589

    Article  Google Scholar 

  12. Shao, S., Yan, R., Lu, Y., Wang, P., Gao, R.X.: DCNN-based multi-signal induction motor fault diagnosis. IEEE Trans. Instrum. Meas. 69(6), 2658–2669 (2020). https://doi.org/10.1109/TIM.2019.2925247

    Article  Google Scholar 

  13. Wu, J., Jiang, B., Chen, H., Liu, J.: Sensors information fusion system with fault detection based on multi-manifold regularization neighborhood preserving embedding. Sensors 19(6), 1440 (2019). https://doi.org/10.3390/s19061440

    Article  Google Scholar 

  14. Wang, Z., Yao, L., Cai, Y., Zhang, J.: Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis. Renew. Energy 155, 1312–1327 (2020). https://doi.org/10.1016/j.renene.2020.04.041

    Article  Google Scholar 

  15. Teng, Y., Shang, P., He, J.: Multiscale fractional-order approximate entropy analysis of financial time series based on the cumulative distribution matrix. Nonlinear Dyn. 97, 1067–1085 (2019). https://doi.org/10.1007/s11071-019-05033-2

    Article  MATH  Google Scholar 

  16. Liu, H., Han, M.: A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 75, 67–78 (2014). https://doi.org/10.1016/j.mechmachtheory.2014.01.011

    Article  Google Scholar 

  17. Landauskas, M., Cao, M., Ragulskis, M.: Permutation entropy-based 2D feature extraction for bearing fault diagnosis. Nonlinear Dyn. 102, 1717–1731 (2020). https://doi.org/10.1007/s11071-020-06014-6

    Article  Google Scholar 

  18. Zheng, J., Jiang, Z., Pan, H.: Sigmoid-based refined composite multi-scale fuzzy entropy and t-SNE based fault diagnosis approach for rolling bearing. Measurement 129, 332–342 (2018). https://doi.org/10.1016/j.measurement.2018.07.045

    Article  Google Scholar 

  19. Yan, X., Jia, M.: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection. Knowl. Based Syst. 163, 450–471 (2019). https://doi.org/10.1016/j.knosys.2018.09.004

    Article  Google Scholar 

  20. Wang, C.: A sample entropy inspired affinity propagation method for bearing fault signal classification. Digital Signal Process. 102, 102740 (2020). https://doi.org/10.1016/j.dsp.2020.102740

    Article  Google Scholar 

  21. Gao, Q., Liu, W., Tang, B., Li, G.: A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multi-scale entropy and least squares support vector machine. Renewable Energy 116, 169–175 (2018). https://doi.org/10.1016/j.renene.2017.09.061

    Article  Google Scholar 

  22. Dai, J., Zheng, J., Pan, H., Pan, Z.: Rolling bearing fault diagnosis method based on composite multi-scale entropy and Laplacian SVM. China Mech. Eng. 28(11), 1339–1346 (2017). https://doi.org/10.3969/j.issn.1004-132X.2017.11.014

    Article  Google Scholar 

  23. Wang, Z., Yao, L., Cai, Y.: Rolling bearing fault diagnosis using generalized refined composite multi-scale sample entropy and optimized support vector machine. Measurement 156, 107574 (2020). https://doi.org/10.1016/j.measurement.2020.107574

    Article  Google Scholar 

  24. Lu, Y., Wang, J.: Multi-variate multi-scale entropy of financial markets. Commun. Nonlinear Sci. Numer. Simul. 52, 77–90 (2017). https://doi.org/10.1016/j.cnsns.2017.04.028

    Article  MathSciNet  Google Scholar 

  25. Humeau-Heurtier, A.: Multi-variate refined composite multi-scale entropy analysis. Phys. Lett. A 380(16), 1426–1431 (2016). https://doi.org/10.1016/j.physleta.2016.02.029

    Article  Google Scholar 

  26. Yin, Y., Wang, X., Li, Q., Shang, P.: Generalized multi-variate multi-scale sample entropy for detecting the complexity in complex systems. Phys. A 545, 123814 (2020). https://doi.org/10.1016/j.physa.2019.123814

    Article  Google Scholar 

  27. Houssein, E.H., Hosney, M.E., Oliva, D., Mohamed, W.M., Hassaballah, M.: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput. Chem. Eng. 133, 106656 (2020). https://doi.org/10.1016/j.compchemeng.2019.106656

    Article  Google Scholar 

  28. Machado, J.T., Lopes, A.M.: Multidimensional scaling and visualization of patterns in prime numbers. Commun. Nonlinear Sci. Numer. Simul. 83, 105128 (2020). https://doi.org/10.1016/j.cnsns.2019.105128

    Article  MathSciNet  MATH  Google Scholar 

  29. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  30. Costa, M. D., Goldberger, A. L.: Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series. Entropy 17(3), 1197–1203 (2015) https://doi.org/10.3390/e17031197

  31. Wei, Y., Li, Y., Xu, M., Huang, W.: Intelligent fault diagnosis of rotating machinery using ICD and generalized composite multi-scale fuzzy entropy. IEEE Access 7, 38983–38995 (2019). https://doi.org/10.1109/ACCESS.2018.2876759

    Article  Google Scholar 

  32. Zheng, J., Pan, H., Yang, S., Cheng, J.: Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis. Mech. Syst. Signal Process. 99, 229–243 (2018). https://doi.org/10.1016/j.ymssp.2017.06.011

    Article  Google Scholar 

  33. Li, J., Xu, Y., Bao, W., Li, Z., Li, L.: Finite-time non-fragile state estimation for discrete neural networks with sensor failures, time-varying delays and randomly occurring sensor nonlinearity. J. Franklin Inst. 356(3), 1566–1589 (2019). https://doi.org/10.1016/j.jfranklin.2018.10.032

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, J., Liu, X., Ru, X., Xu, X.: Disturbance rejection adaptive fault-tolerant constrained consensus for multi-agent systems with failures. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3302–3306 (2020). https://doi.org/10.1109/TCSII.2020.2986059

    Article  Google Scholar 

  35. Zhao, D., Lam, H.K., Li, Y., Ding, S.X., Liu, S.: A novel approach to state and unknown input estimation for takagi–sugeno fuzzy models with applications to fault detection. IEEE Trans. Circuits Syst. I Regul. Pap. 67(6), 2053–2063 (2020). https://doi.org/10.1109/TCSI.2020.2968732

    Article  MathSciNet  MATH  Google Scholar 

  36. Dibaj, A., Ettefagh, M.M., Hassannejad, R., Ehghaghi, M.B.: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults. Expert Syst. Appl. 167, 114094 (2021). https://doi.org/10.1016/j.eswa.2020.114094

    Article  Google Scholar 

  37. Zhang, J., Xu, B., Wang, Z., Zhang, J.: An FSK-MBCNN based method for compound fault diagnosis in wind turbine gearboxes. Measurement 172, 108933 (2021). https://doi.org/10.1016/j.measurement.2020.108933

    Article  Google Scholar 

  38. Wang, Z., Yao, L., Chen, G., Ding, J.: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals. ISA Transactions (2021) (In Press) https://doi.org/10.1016/j.isatra.2020.12.054

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 51775114, 51875105, 51275092); the Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center (Grant No. 2014H21010011); and the Natural Science Foundation of Anhui Province (Grant No. 1808085ME152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ligang Yao or Jun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The data sets generated during and analyzed during the current study are available from the corresponding authors on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, H., Yao, L. et al. An effective multi-channel fault diagnosis approach for rotating machinery based on multivariate generalized refined composite multi-scale sample entropy. Nonlinear Dyn 106, 2107–2130 (2021). https://doi.org/10.1007/s11071-021-06827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06827-z

Keywords

Navigation