Skip to main content
Log in

Solving Huxley equation using an improved PINN method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Although many effective methods for solving partial differential equations (PDEs) have been proposed, there is no universal method that can solve all PDEs. Therefore, solving partial differential equations has always been a difficult problem in mathematics, such as deep neural network (DNN). In recent years, a method of embedding some basic physical laws into traditional neural networks has been proposed to reveal the dynamic behavior of equations directly from space-time data [i.e., physics-informed neural network (PINN)]. Based on the above, an improved deep learning method to recover the new soliton solution of Huxley equation has been proposed in this paper. As far as we know, this is the first time that we have used an improved method to study the numerical solution of the Huxley equation. In order to illustrate the advantages of the improved method, we use the same network depth, the same hidden layer and neurons contained in the hidden layer, and the same training sample points. We analyze the dynamic behavior and error of Huxley’s exact solution and the new soliton solution and give vivid graphs and detailed analysis. Numerical results show that the improved algorithm can use fewer sample points to reconstruct the exact solution of the Huxley equation with faster convergence speed and better simulation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data sets generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ali, M., Rahman, M.L., Chaki, J.: Machine translation using deep learning for universal networking language based on their structure. Int. J. Mach. Learn. Cybern. 3, 1–12 (2021)

    Google Scholar 

  2. Zhang, L., Sun, X.: Study on speech recognition method of artificial intelligence deep learning. J. Phys. Confer. Ser. 1754, 012183 (2021)

    Google Scholar 

  3. Bai, Y., Chaolu, T., Bilige, S.: Physics informed by deep learning: numerical solutions of modified Korteweg-de Vries equation. Adv. Math. Phys. 2021, 1–11 (2021)

    MathSciNet  Google Scholar 

  4. Grigorescu, S., Trasnea, B., Cocias, T.: A survey of deep learning techniques for autonomous driving. J. Field. Robot. 37, 362–386 (2020)

    Google Scholar 

  5. Meng, S., Zhang, N., Ren, Y.: X-DenseNet: deep learning for garbage classification based on visual images. J. Phys. Confer. Ser. 1575, 012139 (2020)

    Google Scholar 

  6. Souza, G., Moreno, R.L., Pimenta, T.C.: Pattern recognition in myoelectric signals using deep learning, features engineering, and a graphics processing unit. IEEE Access 8, 20,8952-20,8960 (2020)

    Google Scholar 

  7. Cai, L., Liu, C., Yuan, R., et al.: Human action recognition using Lie Group features and convolutional neural networks. Nonlinear Dyn. 99, 3253–3263 (2020)

    Google Scholar 

  8. Ali, M.R., Sadat, R.: Lie symmetry analysis, new group invariant for the \((3+1)\)-dimensional and variable coefficients for liquids with gas bubbles models. Chin. J. Phys. 71, 539–547 (2021)

    MathSciNet  Google Scholar 

  9. Ali, M.R., Ma, W.X.: Detection of new multi-wave solutions in an unbounded domain. Mod. Phys. Lett. B 33, 1950425 (2019)

    MathSciNet  Google Scholar 

  10. Ma, W.X., Ali, M.R., Sadat, R.: Analytical solutions for nonlinear dispersive physical model. Complexity 2020, 1–8 (2020)

  11. Ali, M.R., Ma, W.X.: Evolutionary numerical approach for solving nonlinear singular periodic boundary value problems. J. Intell. Fuzzy Syst. 39, 7723–7731 (2020)

    Google Scholar 

  12. Shashank, R.V., Sai, N.B.: Physics-informed neural network method for solving one-dimensional advection equation using PyTorch. ArXiv print arXiv:2103.09662 (2021)

  13. Guo, R., Lin, Z., Shan, T., et al.: Solving combined field integral equation with deep neural network for 2-D conducting object. IEEE Antenn. Wirel. Propag. Lett. 99, 1 (2021)

    Google Scholar 

  14. Jin, J., Zhao, L., Li, M., et al.: Improved zeroing neural networks for finite time solving nonlinear equations. Neural Comput. Appl. 32, 4151–4160 (2020)

    Google Scholar 

  15. Liu, Z., Yang, Y., Cai, Q.: Neural network as a function approximator and its application in solving differential equations. Appl. Math. Mech. 4, 59–70 (2019)

    MATH  Google Scholar 

  16. Liu, Z., Yang, Y., Cai, Q.D.: Solving differential equation with constrained multilayer feedforward network. ArXiv preprint (2019). arXiv:1904.06619

  17. Neha, Y., Anupam, Y., Manoj, K.: An Introduction to Neural Network Methods for Differential Equations. Springer, London (2015)

    MATH  Google Scholar 

  18. Zhang, Z., Zheng, L., Yang, H., et al.: Design and analysis of a novel integral recurrent neural network for solving time-varying Sylvester equation. IEEE Trans. Cybern. 99, 1–15 (2019)

    Google Scholar 

  19. Han, J., Arnulf, J., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Cai, W., Li, X.G., Liu, L.Z.: A phase shift deep neural network for high frequency wave equations in inhomogeneous media. ArXiv preprint (2019). arXiv:1909.11759

  21. Fang, Y., Wu, G.Z., Wang, Y.Y., et al.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. (2021)

  22. Sabir, Z., Ali, M.R., Raja, M., et al.: Computational intelligence approach using Levenberg-Marquardt backpropagation neural networks to solve the fourth-order nonlinear system of Emden–Fowler model. Eng. Comput-Germany 1–17 (2021). https://doi.org/10.1007/s00366-021-01427-2

  23. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Multistep neural networks for data-driven discovery of nonlinear dynamical systems. ArXiv print (2018). arXiv:1801.01236

  24. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations. ArXiv print (2017). arXiv:1711.10561

  26. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations. ArXiv print (2017). arXiv:1711.10566

  27. Raissia, M., Perdikarisb, P., Karniadakisa, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    MathSciNet  Google Scholar 

  28. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., et al.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proc. R. Soc. A Math. Phys. Eng. Sci. (2020). https://doi.org/10.1098/rspa.2020.0334

    Article  MATH  Google Scholar 

  30. Qian, S., Liu, H., Liu, C., et al.: Adaptive activation functions in convolutional neural networks. Neurocomputing 272, 204–212 (2018)

    Google Scholar 

  31. Dushkoff, M., Ptucha, R.: Adaptive activation functions for deep networks. Electr. Imaging 19, 1–5 (2016)

    Google Scholar 

  32. Li, B., Li, Y., Rong, X.: The extreme learning machine learning algorithm with tunable activation function. Neural Comput. Appl. 22, 531–539 (2013)

    Google Scholar 

  33. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Dai, Y.D., Zhang, H.L., Yuan, Y.P., et al.: The traveling solution of Huxley equation (in Chinese). Heilongjiang Sci. Technol. Inf. 11, 57 (2016)

    Google Scholar 

  35. Ren, B.: Painlevé analysis, soliton molecule, and lump solution of the higher-order Boussinesq equation. Adv. Math. Phys. 2021, 1–6 (2021)

    Google Scholar 

  36. Sun, Y., Ha, J., Zhang, H.: Lump solution and lump-type solution to a class of mathematical physics equation. Mod. Phys. Lett. B 34, 2050096 (2020)

    MathSciNet  Google Scholar 

  37. Liu, J., Wu, J.W.: Lump and interaction solutions to the \((3+1)\)-dimensional Burgers equation. Chin. Phys. B. 29, 66–70 (2020)

    Google Scholar 

  38. Manafian, J., Ilhan, O.A., Alizadeh, A., et al.: Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. Commun. Theor. Phys. 72, 075002 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Gai, L., Ma, W.X., Li, M.: Lump-type solution and breather lump-kink interaction phenomena to a \((3+1)\)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 100, 2715–2727 (2020)

    Google Scholar 

  40. Xu, H., Ma, Z., Fei, J., et al.: Novel characteristics of lump and lump-soliton interaction solutions to the generalized variable-coefficient Kadomtsev-Petviashvili equation. Nonlinear Dyn. 98, 551–560 (2019)

    MATH  Google Scholar 

  41. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    Google Scholar 

  42. Ali, M.R., Sadat, R.: Construction of Lump and optical solitons solutions for \((3+1)\) model for the propagation of nonlinear dispersive waves in inhomogeneous media. Opt. Quant. Electron. 53, 1–13 (2021)

    Google Scholar 

  43. Rao, J., Wang, L., Liu, W., et al.: Rogue-wave solutions of the Zakharov equation. Theor. Math. Phys. 193, 1783–1800 (2017)

  44. Sun, W.R., Wang, L.: Vector rogue waves, rogue wave-to-soliton conversions and modulation instability of the higher-order matrix nonlinear Schrödinger equation. Eur. Phys. J. Plus. 133, 495 (2018)

    Google Scholar 

  45. Mao, J.J., Tian, S.F., Zou, L., et al.: Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a \((3+1)\)-dimensional B-type Kadomtsev-Petviashvili equation. Nonlinear Dyn. 95, 3005–3017 (2019)

    MATH  Google Scholar 

  46. Ankiewicz, A., Akhmediev, N.: Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions. Nonlinear Dyn. 91, 1931–1938 (2018)

    Google Scholar 

  47. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20200334 (2020)

    MathSciNet  Google Scholar 

  48. Panghal, S., Kumar, M.: Approximate analytic solution of Burger Huxley equation using feed-forward artificial neural network. Neural Process. Lett. 53, 2147–2163 (2021)

    Google Scholar 

  49. Babolian, E., Saeidian, J.: Analytic approximate solutions to Burgers, Fisher, Huxley equations and two combined forms of these equations. Commun. Nonlinear Sci. Numer. Simul. 14, 1984–1992 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  51. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987)

    MathSciNet  MATH  Google Scholar 

  52. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Progr. 45, 503–528 (1989)

    MathSciNet  MATH  Google Scholar 

  53. Teng, X., Zhang, W.: Qualitative analysis and exact solutions of Huxley equation. Appl. Math. Ser. B 21, 65–69 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11571008), (11661060), and (12061054) and Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018LH01013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexing Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Chaolu, T. & Bilige, S. Solving Huxley equation using an improved PINN method. Nonlinear Dyn 105, 3439–3450 (2021). https://doi.org/10.1007/s11071-021-06819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06819-z

Keywords

Navigation