Skip to main content
Log in

A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a S-type memristor with tangent nonlinearity is proposed. The introduced memristor can generate two kinds of stable pinched hysteresis loops with initial conditions from two flanks of the initial critical point. The power-off plot verifies that the memristor is nonvolatile, and the DC V-I plot shows that the memristor is locally active with the locally active region symmetrical about the origin. The equivalent circuit of the memristor, derived by small-signal analysis method, is used to study the dynamics near the operating point in the locally active region. Owing to the bistable and locally active properties and S-type DC V-I curve, this memristor is called S-type BLAM for short. Then, a new Wien-bridge oscillator circuit is designed by substituting one of its resistances with S-type BLAM. It finds that the circuit system can produce chaotic oscillation and complex dynamic behavior, which is further confirmed by analog circuit experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. Chang, H., Li, Y., Chen, G., Yuan, F.: Extreme multistability and complex dynamics of a memristor-based chaotic system. Int. J. Bifurcat. Chaos 30, 434–445 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, C.L., Li, Z.Y., Feng, W., Tong, Y.N., Du, J.R., Wei, D.Q.: Dynamical behavior and image encryption application of a memristor-based circuit system. AEU-Int. J. Electron. Commun. 110, 152861 (2019)

    Article  Google Scholar 

  5. Li, J., Dong, Z., Luo, L., Duan, S., Wang, L.: A novel versatile window function for memristor model with application in spiking neural network. Neurocomput. 405, 239–246 (2020)

    Article  Google Scholar 

  6. Hu, X., Liu, C., Ling, L., Ni, J., Yao, Y.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91, 1541–1554 (2018)

    Article  Google Scholar 

  7. Tan, Q.W., Zeng, Y.C., Li, Z.J.: A simple inductor-free memristive circuit with three line equilibria. Nonlinear Dyn. 94, 1585–1602 (2018)

    Article  Google Scholar 

  8. Caldarola, F., Pantano, P., Bilotta, E.: Computation of supertrack functions for Chua’s oscillator and for Chua’s circuit with memristor. Commun. Nonlinear Sci. Numer. Simulat. 94, 105568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Peng, Y.X., He, S.B., Sun, K.H.: A higher dimensional chaotic map with discrete memristor. AEU-Int. J. Electron. Commun. 129, 153539 (2021)

    Article  Google Scholar 

  10. Li, L., Zhe, K.D., Xu, H., Li, D.W., Duan, S.: Nonvolatile boolean logic in the one-transistor-one-memristor crossbar array for reconfigurable logic computing. AEU Int. J. Electron. Commun. 129, 153542 (2020)

    Google Scholar 

  11. Ascoli, A., Tetzlaff, R., Chua, L.O.: The first ever real bistable memristors—part II: design and analysis of a local fading memory system. IEEE Trans. Circ. Syst. II 63, 1096–1100 (2016)

    Google Scholar 

  12. Mannan, Z.I., Choi, H., Rajamani, V.: Chua corsage memristor: phase portraits, basin of attraction, and coexisting pinched hysteresis loops. Int. J. Bifurcat. Chaos 27, 1730011 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu, M.H., Wang, C.H., Deng, Q.L., Hong, Q.H.: Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit. Int. J. Bifurcat. Chaos 30, 2050184 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, H.R., Wang, C.H., Hong, Q.H., Sun, Y.C.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circ. Syst. -II 99, 3000492 (2020)

    Google Scholar 

  15. Tan, Y.M., Wang, C.H.: A simple locally active memristor and its application in HR neurons. Chaos 30, 053118 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, H.R., Wang, C.H., Sun, Y.C., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100, 3667–3683 (2020)

    Article  Google Scholar 

  17. Dong, Y.J., Wang, G.Y., Chen, G.R., Shen, Y.R., Ying, J.J.: A bistable nonvolatile locally-active memristor and its complex dynamics. Commun. Nonlinear Sci. Numer. Simulat. 84, 105203 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, P.P., Wang, G.Y., Iu, H.H., Fernando, T.: A locally-active memristor and its application in chaotic circuit. IEEE Trans. Circ. Syst. -II 65, 17524546 (2017)

    Google Scholar 

  19. Dong, Y.J., Wang, G.Y., Iu, H.H., Chen, G.R., Chen, L.: Coexisting hidden and self-excited attractors in a locally active memristor-based circuit. Chaos 30, 103123 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chua, L.O.: Local activity is the origin of complexity. Int. J. Bifurcat. Chaos 15, 3435–3456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chua, L.O.: Everything you wish to know about memristors but are afraid to ask. Radioeng. 24, 319–368 (2015)

    Google Scholar 

  22. Goodwill, J.M., Ramer, G., Li, D.S., Hoskins, B.D., Skowronski, M.: Spontaneous current constriction in threshold switching devices. Nat. Commun. 10, 1628 (2019)

    Article  Google Scholar 

  23. Yi, W., Tsang, K.K., Lam, S.K., Bai, X.W., Crowell, J.A., Flores, E.A.: Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018)

    Article  Google Scholar 

  24. Pickett, M.D., Williams, R.S.: Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)

    Article  Google Scholar 

  25. Ascoli, A., Slesazeck, S., Mahne, H.: Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circ. Syst. -I 62, 1165–1174 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Gibson, G.A., Musunuru, S., Zhang, J.: An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 108, 023505 (2016)

    Article  Google Scholar 

  27. Weiher, M., Herzig, M., Tetzlaff, R.: Pattern formation with locally active S-type NbOx memristors. IEEE Trans. Circ. Syst. -I 66, 1549–8328 (2019)

    Google Scholar 

  28. Zhang, X.M., Zhuo, Y., Luo, Q., et al.: An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11, 51 (2020)

    Article  Google Scholar 

  29. Liang, Y., Wang, G.Y., Chen, G.R., Dong, Y.J., Yu, D.S., Iu, H.H.C.: S-type locally active memristor-based periodic and chaotic oscillators. IEEE Trans. Circ. Syst. -I 67, 5139–5152 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Li, S., Liu, X.J., Nandi, S.K.: Origin of current-controlled negative differential resistance modes and the emergence of composite characteristics with high complexity. Adv. Funct. Mater. 29, 1905060 (2019)

    Article  Google Scholar 

  31. Sah, M.P., Mannan, Z.I., Kim, H.: Oscillator made of only one memristor and one battery. Int. J. Bifurcat. Chaos 25, 1530010 (2015)

    Article  MATH  Google Scholar 

  32. Lin, H.R., Wang, C.H., Tan, Y.M.: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99, 2369–2386 (2020)

    Article  Google Scholar 

  33. Chang, H., Wang, Z., Li, Y.X.: Dynamic analysis of a bistable bi-local active memristor and its associated oscillator system. Int. J. Bifurcat. Chaos 28, 1850105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ginoux, J.M., Muthuswamy, B., Meucci, R., Euzzor, S., Ganesan, K.: A physical memristor based Muthuswamy-Chua-Ginoux system. Sci. Rep. -UK 10, 19206 (2020)

    Article  Google Scholar 

  35. Li, S., Liu, X.J., Nandi, S.K., Elliman, R.G.: Coupling dynamics of Nb/Nb2O5 relaxation oscillators. Nanotechnol. 28, 125201 (2017)

    Article  Google Scholar 

  36. Pano-Azucena, A.D., Lelo-Cuautle, E.T., Rodriguez-Gomez, G.: FPGA-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials. Aip Adv. 8, 075217 (2018)

    Article  Google Scholar 

  37. Sanchez-Lopez, C., Aguila-Cuapio, L.E.: A 860 kHz grounded memristor emulator circuit. AEU-Int. J. Electron. Commun. 73, 23–33 (2016)

    Article  Google Scholar 

  38. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48, 824–825 (2012)

    Article  Google Scholar 

  39. Sanchez-Lopez, C., Carrasco-Aguilar, M.A., Muniz-Montero, C., Mendoza-Lopez, J.: A floating analog memristor emulator circuit. IEEE Trans. Circ. Syst -II 61, 1549–7747 (2014)

    Google Scholar 

  40. Xu, B.R., Wang, G.Y.: Meminductive Wien-bridge chaotic oscillator. Acta. Phys. Sin. 66, 020502 (2017)

    Article  Google Scholar 

  41. Ndassi, H.L., Tchendjeu, A.E.T., Tingue, M.M., Kengne, E.R.M., Tchoffo, M.: Complex dynamics of a modified four order Wien-bridge oscillator model and FPGA implementation. Eur. Phys. J. Plus 135, 764 (2020)

    Article  Google Scholar 

  42. Lai, Q.: A unified chaotic system with various coexisting attractors. Int. J. Bifurcat. Chaos 31, 2150013 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dong, E.Z., Yuan, M.F., Du, S.Z., Chen, Z.Q.: A new class of hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 73, 40–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jafari, S., Sprott, J.C., Dehghan, S.: Categories of conservative flows. Int. J. Bifurcat. Chaos 29, 1950021 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, C.G., Mou, J., Xiong, L., Banerjee, S., Liu, T.M., Han, X.T.: Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103, 2867–2880 (2021)

    Article  Google Scholar 

  46. Li, C.L., Li, H.M., Li, W., Tong, Y.N., Zhang, J., Wei, D.Q., Li, F.D.: Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria. AEU-Int. J. Electron. Commun. 84, 199–205 (2018)

    Article  Google Scholar 

  47. Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C.K., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)

    Article  Google Scholar 

  48. Li, H.M., Yang, Y.F., Li, W., He, S.B., Li, C.L.: Extremely rich dynamics in a memristor-based chaotic system. Eur. Phys. J. Plus 135, 579 (2020)

    Article  Google Scholar 

  49. Pano-Azucena, A.D., Tlelo-Cuautle, E., Ovilla-Martinez, B.: Pipeline FPGA-based implementations of ANNs for the prediction of up to 600-steps-ahead of chaotic time series. J. Circuit. Syst. Comp. (2020)

  50. Silva-Juárez, A., Tlelo-Cuautle, E., Fraga, L., Li, R.: FPAA-based implementation of fractional-order chaotic oscillators using first-order active filter blocks. J. Adv. Res. (2020)

  51. Tlelo-Cuautle, E., Valencia-Ponce, M.A., Fraga, L.: Sizing CMOS amplifiers by PSO and MOL to improve DC operating point conditions. Electronics 9, 1027 (2020)

    Article  Google Scholar 

Download references

Funding

This study was funded by Hunan Provincial Natural Science Foundation of China (Nos. 2019JJ40109, 2020JJ4337, 2020JJ4341); Science and Technology Program of Hunan Province (No. 2019TP1014); Science and Research Creative Team of Hunan Institute of Science and Technology (No. 2019-TD-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The data used to support the findings of this study are included within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, H., Xie, W. et al. A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit. Nonlinear Dyn 106, 1041–1058 (2021). https://doi.org/10.1007/s11071-021-06814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06814-4

Keywords

Navigation