Skip to main content
Log in

Trajectory stabilization control for aerial recovery of cable-drogue-UAV assembly

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicles (UAVs) aerial recovery denotes the technology that UAVs are recovered in the air by the transport aircraft for reuse. During the recovery process, the multiple wind perturbations and fast-changing UAV’s engine shutdown will induce oscillations in the cable-drogue-UAV assembly (CDUA) with strong nonlinearities and tight coupling, which affects the safety and speed of the UAV aerial recovery. Aiming at this problem, this paper proposes a non-constraining force direction (NCFD)-based CDUA anti-disturbance trajectory control method for the first time. First, by transforming the CDUA trajectory control to the NCFD control, the coupling and nonlinear effects in the CDUA can be reduced, and the fast-changing disturbances caused by the engine shutdown can be compensated. Then, feed forward control is designed based on the relationship between the NCFD and cable shape, which is established based on the cable dynamics, to improve the response speed. Furthermore, a fixed-time anti-disturbance controller (FTADC) is designed for the flow angle of drogue-UAV assembly (DUA) given by the NCFD controller and compensates for the effects of wind and parameter perturbations. Finally, the stability of the proposed method is analyzed, and the effectiveness is demonstrated by abundant simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Wierzbanowski, S.: Germlins, Defense Advanced Research Projects Agency (DARPA). https://www.darpa.mil/program/gremlins.

  2. DARPA Gremlins Project Completes Third Flight Test Deployment. DARPA NEWS., https://www.darpa.mil/news-events/2020-12-10.

  3. Choi, A.J., Yang, H.H., Han, J.H.: Study on robust aerial docking mechanism with deep learning based drogue detection and docking. Mech. Syst. Signal. Process. 154, 107579 (2021)

    Article  Google Scholar 

  4. Su, Z., Li, C., Liu, Y.: Anti-disturbance dynamic surface trajectory stabilization for the towed aerial recovery drogue under unknown airflow disturbances. Mech. Syst. Signal. Process. 150, 107342 (2021)

    Article  Google Scholar 

  5. Thakar, S., Ratnoo, A.: Rendezvous guidance laws for aerial recovery using mothership-cable-drogue system. IFAC-PapersOnLine 49(1), 24–29 (2016)

    Article  Google Scholar 

  6. Yao, P., Wang, H., Ji, H.: Gaussian mixture model and receding horizon control for multiple UAV search in complex environment. Nonlinear Dyn. 88(2), 903–919 (2017)

    Article  Google Scholar 

  7. Merz, M., Johansen, T.A.: Control of an end body towed by a circling unmanned aerial vehicle. J. Guid. Control. Dyn. 42(12), 2677–2686 (2019)

    Article  Google Scholar 

  8. Nichols, J.W., Sun, L., Beard, R.W., McLain, T.: Aerial rendezvous of small unmanned aircraft using a passive towed cable system. J. Guid. Control. Dyn. 37(4), 1131–1142 (2014)

    Article  Google Scholar 

  9. Ma, T., Wei, Z., Chen, H., Wang, X.: Simulation of the dynamic retrieval process of a towed target system under towing airplane’s wake and atmospheric turbulence. P. I. Mech. Eng. G-J. Aer. 234(9), 1518–1530 (2020)

    Google Scholar 

  10. Su, Z., Wang, H., Li, N., Yu, Y., Wu, J.: Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode. Mech. Syst. Signal. Process. 101, 338–360 (2018)

    Article  Google Scholar 

  11. Wu, C., Hui, J., Yan, J., Guo, Y., Xiao, B.: Dynamic modeling and faster finite-time attitude stabilization of receiver aircraft for aerial refueling. Nonlinear Dyn. 104(1), 467–481 (2021)

    Article  Google Scholar 

  12. Liu, Y., Wang, H., Fan, J.: Novel docking controller for autonomous aerial refueling with probe direct control and learning-based preview method. Aerosp. Sci. Technol. 94, 105403 (2019)

    Article  Google Scholar 

  13. Liu, Y., Wang, H., Fan, J.: Docking Safety Assessment and Optimization for Autonomous Aerial Refueling: A Data-Driven Method. IEEE Syst. J. (2020)

  14. Ro, K., Kuk, T., Kamman, J.: Active control of aerial refueling hose-drogue systems. In AIAA guidance, navigation, and control conference (p. 8400). (2010)

  15. Bourmistrov, A.S., Hill, R.D., Riseborough, P.: Nonlinear control law for aerial towed target. J. Guid. Control. Dyn. 18(6), 1232–1238 (1995)

    Article  Google Scholar 

  16. Sun, L., Castagno, J.D., Hedengren, J.D., Beard, R.W.: Parameter estimation for towed cable systems using moving horizon estimation. IEEE Trans. Aero. Elec. Sys. 51(2), 1432–1446 (2015)

    Article  Google Scholar 

  17. Williamson, W.R., Reed, E., Glenn, G.J., Stecko, S.M., Musgrave, J., Takacs, J.M.: Controllable drogue for automated aerial refueling. J. Aircraft. 47(2), 515–527 (2010)

    Article  Google Scholar 

  18. Codetta-Raiteri, D., Portinale, L.: Dynamic Bayesian networks for fault detection, identification, and recovery in autonomous spacecraft. IEEE Trans. Syst. Man Cy-s. 45(1), 13–24 (2014)

    Article  Google Scholar 

  19. Shao, X., Hu, Q., Shi, Y.: Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints. IEEE Trans. Contr. Syst. T. 29(4), 1405–1419 (2020)

    Article  Google Scholar 

  20. Abrishami, A., Gong, S.: Optimized control allocation of an articulated overactuated solar sail. J. Guid. Control. Dyn. 43(12), 2321–2332 (2020)

    Article  Google Scholar 

  21. Abad, E.C., Alonso, J.M., García, M.J.G., García-Prada, J.C.: Methodology for the navigation optimization of a terrain-adaptive unmanned ground vehicle. Int. J. Adv. Robot. Syst. 15(1), 1729881417752726 (2018)

    Article  Google Scholar 

  22. Corral, E., Moreno, R. G., García, M. G., Castejón, C.: Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn. 1–27. (2021)

  23. Corral, E., Gismeros Moreno, R., Meneses, J., García, M.J.G., Castejón, C.: Spatial algorithms for geometric contact detection in multibody system dynamics. Mathematics 9(12), 1359 (2021)

    Article  Google Scholar 

  24. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  25. Song, N., Peng, H., Kan, Z., Chen, B.: A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space. Nonlinear Dyn. 102(3), 1375–1408 (2020)

    Article  Google Scholar 

  26. Seo, J.H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dyn. 42(2), 199–215 (2005)

    Article  Google Scholar 

  27. Wang, H., Dong, X., Xue, J., Liu, J.: Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping phenomenon. Chinese. J. Aeronaut. 27(4), 930–946 (2014)

    Article  Google Scholar 

  28. Erickson, A. J., Chaturvedi, A., Richards, P. W.: Real-Time Simulation of Aerial Refueling Probe-and-Drogue Contact and Engagement Using Simscape Multibody. In AIAA Scitech 2020 Forum (p. 1394) (2020)

  29. García-Fogeda, P., Esteban Molina, J., Arévalo, F.: Dynamic response of aerial refueling hose-drogue system with automated control surfaces. J. Aero. Eng. 31(6), 04018110 (2018)

    Article  Google Scholar 

  30. Kim, E.: Control and simulation of relative motion for aerial refueling in racetrack maneuver. The University of Texas at Arlington, 2007.

  31. Ro, K., Kamman, J.W.: Modeling and simulation of hose-paradrogue aerial refueling systems. J. Guid. Control. Dyn. 33(1), 53–63 (2010)

    Article  Google Scholar 

  32. Leshchenko, D., Ershkov, S., Kozachenko, T.: Evolution of a heavy rigid body rotation under the action of unsteady restoring and perturbation torques. Nonlinear Dyn. 103(2), 1517–1528 (2021)

    Article  Google Scholar 

  33. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100(3), 2505–2519 (2020)

    Article  Google Scholar 

  34. Zhang, L., Xu, S., Ju, X., Cui, N.: Flexible satellite control via fixed-time prescribed performance control and fully adaptive component synthesis vibration suppression. Nonlinear Dyn. 100, 3413–3432 (2020)

    Article  Google Scholar 

  35. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Contr. Syst. T. 24(5), 1892–1898 (2016)

    Article  Google Scholar 

  36. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhang, J., Yu, S., Yan, Y.: Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances. Ocean Eng. 186, 106109 (2019)

    Article  Google Scholar 

  38. Zhao, C., Guo, L.: PID controller design for second order nonlinear uncertain systems. Sci. China Inform. Sci. 60(2), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  39. Xu, L.X., Ma, H.J., Guo, D., Xie, A.H., Song, D.L.: Backstepping sliding-mode and cascade active disturbance rejection control for a quadrotor UAV. IEEE/ASME Trans. Mech. 25(6), 2743–2753 (2020)

    Article  Google Scholar 

  40. Dogan, A., Lewis, T.A., Blake, W.: Flight data analysis and simulation of wind effects during aerial refueling. J. Aircraft. 45(6), 2036–2048 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the National Natural Science Foundations of China under Grant 62173022 and 61673042 and the Academic Excellence Foundation of BUAA for PhD Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Aerodynamics model of drogue-UAV assembly (DUA):

$$ Q = \frac{1}{2}\rho V^{2} ,\rho = \rho_{0} {\text{e}}^{ - k\left| z \right|} $$
(31)
$$ {\mathbf{F}}_{A} = \left[ \begin{gathered} L \hfill \\ D \hfill \\ C \hfill \\ \end{gathered} \right] = QS\left[ \begin{gathered} c_{L,0}^{{}} + c_{L}^{\alpha } \alpha + c_{L}^{{\alpha^{2} }} \alpha^{2} + c_{L}^{q} \overline{c}q/(2V) + c_{L}^{{\delta_{e} }} \delta_{e} \hfill \\ c_{D,0}^{{}} + c_{D}^{\alpha } \alpha + c_{D}^{{\alpha^{2} }} \alpha^{2} \hfill \\ c_{{C{,0}}}^{{}} + c_{C}^{\beta } \beta + c_{C}^{{\delta_{a} }} \delta_{a} + c_{C}^{{\delta_{r} }} \delta_{r} + c_{C}^{p} \overline{b}p/(2V) + c_{C}^{r} \overline{b}r/(2V) \hfill \\ \end{gathered} \right] $$
(32)
$$ {\mathbf{M}} = \left[ \begin{gathered} {L} \hfill \\ {M} \hfill \\ {N} \hfill \\ \end{gathered} \right] = QS\left[ \begin{gathered} \overline{b}\left( {c_{{\mathcal{L}\ominus ,0}} + c_{\mathcal{L}}^{{\delta_{a} }} \delta_{a} + c_{\mathcal{L}}^{{\delta_{r} }} \delta_{r} + c_{\mathcal{L}}^{\beta } \beta + c_{\mathcal{L}}^{p} \overline{b}p/\left( {2V} \right) + c_{\mathcal{L}}^{r} \overline{b}r/\left( {2V} \right)} \right) \hfill \\ \overline{c}\left( {c_{{\mathcal{M}\ominus ,0}} + c_{\mathcal{M}}^{{\delta_{e} }} \delta_{e} + c_{\mathcal{M}}^{\alpha } \alpha + c_{\mathcal{M}}^{q} \overline{c}q/\left( {2V} \right)} \right) \hfill \\ \overline{b}\left( {c_{{\mathcal{N}\ominus ,0}} + c_{\mathcal{N}}^{{\delta_{a} }} \delta_{a} + c_{\mathcal{N}}^{{\delta_{r} }} \delta_{r} + c_{\mathcal{N}}^{\beta } \beta + c_{\mathcal{N}}^{p} \overline{b}p/\left( {2V} \right) + c_{\mathcal{N}}^{r} \overline{b}r/\left( {2V} \right)} \right) \hfill \\ \end{gathered} \right] $$
(33)

where \(L,D,C\) are lift, drag, and lateral force, respectively; \({L},{M},{N}\) are rolling, pitching, and yawing moment, respectively; \(Q\) denotes the dynamic pressure; \(\rho_{0}\) is the basic atmospheric density; \(S\) denotes the reference area of DUA; \(\overline{b}\) denotes the wind span and \(\overline{c}\) denotes the wing mean chord; \( c_{L} ,c_{D} ,c_{C}\) terms denote the lift, drag, lateral force coefficients, respectively; \( c_{{\mathcal{L}\ominus }} ,c_{{\mathcal{M}\ominus }} ,c_{{\mathcal{N}\ominus }}\) terms denote the rolling, pitching, and yawing moment coefficients, respectively. These aerodynamic force and moment coefficients are the functions of angle of attack (AOA) \(\alpha\), angle of sideslip (AOS) \(\beta\) and airspeed \(V\). And they are obtained using the computational fluid dynamics (CFD) method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, H., Fan, J. et al. Trajectory stabilization control for aerial recovery of cable-drogue-UAV assembly. Nonlinear Dyn 105, 3191–3210 (2021). https://doi.org/10.1007/s11071-021-06773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06773-w

Keywords

Navigation