Skip to main content
Log in

Double canard cycles in singularly perturbed planar systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the bifurcations of slow-fast cycles with two canard points in singularly perturbed planar systems. After analyzing the local dynamics of two canard points lying on the S-shaped critical manifolds, we give a sufficient condition under which there exist three hyperbolic limit cycles bifurcating from some slow-fast cycles. The proof is based on the geometric singular perturbation theory. Then, we apply the results to cubic Liénard equations with quadratic damping, and prove the coexistence of three large limit cycles enclosing three equilibria. This is a new dynamical configuration and has never been previously found in the existing references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chen, H., Chen, X.: Dynamical analysis of a cubic Liénard system with global parameters. Nonlinearity 28, 3535–3562 (2015)

    Article  MathSciNet  Google Scholar 

  2. Chen, H., Chen, X.: A proof of Wang-Kooijs conjectures for a cubic Liénard system with a cusp. J. Math. Anal. Appl. 445, 884–897 (2017)

    Article  MathSciNet  Google Scholar 

  3. Chen, S., Duan, J., Li, J.: Dynamics of the Tyson–Hong—Thron–Novak circadian oscillator model. Phys. D 420, 132869 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chow, S.N., Hale, J.K.: Methods of Bifurcations Theory. Springer, New York (1982)

    Book  Google Scholar 

  5. De Maesschalck, P., Dumortier, F.: Canard cycles in the presence of slow dynamics with singularities. Proc. Roy. Soc. Edinburgh Sect. A 138, 265–299 (2008)

    Article  MathSciNet  Google Scholar 

  6. De Maesschalck, P., Desroches, M.: Numerical continuation techniques for planar slow-fast systems. SIAM J. Appl. Dyn. Syst. 12, 1159–1180 (2013)

    Article  MathSciNet  Google Scholar 

  7. De Maesschalck, P., Dumortier, F., Roussarie, R.: Canard cycles transition at a slow-fast passage through a jump point. C. R. Math. Acad. Sci. Pairs 352, 317–320 (2014)

    Article  MathSciNet  Google Scholar 

  8. Deng, B., Han, M., Hsu, S.: Numerical proof for chemostat chaos of Shilnikovs type. Chaos 27, 033106 (2017)

    Article  MathSciNet  Google Scholar 

  9. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal. 275, 988–1007 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dumortier, F., Roussarie, R.: Canard Cycles and Center Manifolds, Mem, vol. 577. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  11. Dumortier, F., Li, C.: Quadratic Liénard equations with quadratic damping. J. Differ. Equ. 139, 41–59 (1997)

    Article  Google Scholar 

  12. Dumortier, F., Kooij, R., Li, C.: Cubic Liénard equations with quadratic damping having two antisaddles. Qual. Theory Dyn. Syst. 2, 163–209 (2000)

    Article  Google Scholar 

  13. Dumortier, F., Llibre, J., Artés, J.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Dumortier, F., Roussarie, R.: Multiple canard cycles in generalized Linard equations. J. Differ. Equ. 174, 1–29 (2001)

    Article  Google Scholar 

  15. Dumortier, F., Roussarie, R.: Canard cycles with two breaking parameters. Discret. Contin. Dyn. Sys. 17, 787–806 (2007)

    Article  MathSciNet  Google Scholar 

  16. Dumortier, F., Roussarie, R.: Multi-layer canard cycles and translated power functions. J. Differ. Equ. 244, 1329–1358 (2008)

    Article  MathSciNet  Google Scholar 

  17. Dumortier, F.: Slow divergence integral and balanced canard solutions. Qual. Theory Dyn. Syst. 10, 65–85 (2011)

    Article  MathSciNet  Google Scholar 

  18. Eisenberg, B., Liu, W.: Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38, 1932–1966 (2007)

    Article  MathSciNet  Google Scholar 

  19. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MathSciNet  Google Scholar 

  20. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equ. 31, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  21. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42. Springer, New York (1983)

  22. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MathSciNet  Google Scholar 

  23. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257, 1721–1752 (2014)

    Article  MathSciNet  Google Scholar 

  24. Jones, C.K.R.T.: Geometric Singular Perturbation Theory, in Dynamical systems. Lecture Notes in Math, vol. 1609. Springer, Berlin (1995)

    Google Scholar 

  25. Keener, J., Sneyd, J.: Mathematical Physiology Int Appl Math, vol. 8. Springer, New York (1998)

    Book  Google Scholar 

  26. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic pointsfold and canard points in two dimensions. SIAM J. Math. Anal. 2, 286–314 (2001)

    Article  Google Scholar 

  27. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  MathSciNet  Google Scholar 

  28. Kuehn, C.: Multiple Time Scale Dynamics, Appl. Math. Sci. 191. Springer, Swizerland (2015)

    Book  Google Scholar 

  29. Li, C., Llibre, J.: Uniqueness of limit cycles for Liénard differential equations of degree four. J. Differ. Equ. 252, 3142–3162 (2012)

    Article  Google Scholar 

  30. Li, C., Zhu, H.: Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 254, 879–910 (2013)

    Article  MathSciNet  Google Scholar 

  31. Li, C., Lu, K.: Slow divergence integral and its application to classical Linard equations of degree 5. J. Differ. Equ. 257, 4437–4469 (2014)

    Article  Google Scholar 

  32. Mamouhdi, L., Roussarie, R.: Canard cycles of finite codimension with two breaking parameters. Qual. Theory Dyn. Syst. 11, 167–198 (2012)

    Article  MathSciNet  Google Scholar 

  33. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Moscow. Math. Soc. 12, 1–57 (1963)

    MathSciNet  Google Scholar 

  34. Milnor, J.: Morse theory, Annals of Math. Stud., vol. 51. Princeton University Press, Princeton, N.J. (1963)

    Google Scholar 

  35. Rubin, J., Terman, D.: Geometric Singular Perturbation Analysis of Neuronal Dynamics. In: Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, pp. 93–146 (2002)

  36. Shen, J., Han, M.: Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Linard systems. Dis. Contin. Dyn. Syst. 33, 3085–3108 (2013)

    Article  Google Scholar 

  37. Tyson, J., Hong, C., Thron, C., Novak, B.: A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J. 77, 2411–2417 (1999)

    Article  Google Scholar 

  38. Wang, C., Zhang, X.: Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type III. J. Differ. Equ. 267, 3397–3441 (2019)

    Article  MathSciNet  Google Scholar 

  39. Wang, Y., Jing, Z.: Cubic Liénard equations with quadratic damping (II). Acta Math. Appl. Sin. Engl. Ser. 18, 103–116 (2002)

    Article  MathSciNet  Google Scholar 

  40. Wechselberger, M.: Extending Melnikov theory to invariant manifolds on noncompact domains. Dyn. Sys. 17, 215–233 (2002)

    Article  MathSciNet  Google Scholar 

  41. Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Appl. Math. Sci., vol. 105. Springer, New York (1994)

    Book  Google Scholar 

  42. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations, Transl. Math. Monographs 101, Amer. Math. Soc., Providence (1992)

Download references

Acknowledgements

We would like to thank the editor and the anonymous referees for carefully reading the manuscript and providing valuable comments. This work was partly supported by the NSFC grants 11771449, 11771161, and the Science and Technology Project for Excellent Postdoctors of Hubei Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Duan, J. & Li, J. Double canard cycles in singularly perturbed planar systems. Nonlinear Dyn 105, 3715–3730 (2021). https://doi.org/10.1007/s11071-021-06769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06769-6

Keywords

Navigation