Skip to main content
Log in

Analysis of elasto-plastic thin-shell structures using layered plastic modeling and absolute nodal coordinate formulation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new elasto-plastic thin-shell finite element of the absolute nodal coordinate formulation allowing for large deformation and finite rotation is proposed based on the Kirchhoff–Love theory and layered plastic model. The von Mises yield criterion of plane-stress with linear isotropic hardening is adopted in constitutive description of elasto-plastic material. Owing to the plane-stress constraint, special treatment should be given to the stress update algorithm for plasticity. To accommodate the plasticity formulation, the Gauss-point layered integration is inserted into the thickness of the element to produce the internal force. Then, the Jacobian of internal forces is deduced by deriving the consistent elasto-plastic tangent moduli. To accurately track the load–displacement equilibrium path in the buckling analysis of elasto-plastic thin shells, the arc-length method is used. The dynamics of the thin shells is also studied by using the generalized-alpha algorithm. Finally, several static and dynamic examples are presented to verify the accuracy of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kim, K.D., Lomboy, G.R.: A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis. Comput. Methods Appl. Mech. Engrg. 195, 6502–6522 (2006)

    Article  MATH  Google Scholar 

  2. Mohammed, A.K., Skallerud, B., Amdahl, J.: Simplified stress resultants plasticity on a geometrically nonlinear constant stress shell element. Comput. Struct. 79, 1723–1734 (2001)

    Article  Google Scholar 

  3. Simo, J.C., Kennedy, J.G.: On a stress resultant geometrically exact shell model. Part V. nonlinear plasticity: formulation and integration algorithms. Comput. Methods Appl. Mech. Engrg. 96, 133–171 (1992)

  4. Skallerud, B., Myklebust, L.I., Haugen, B.: Collapse of thin shell structures: stress resultant plasticity modeling within a co-rotated ANDES finite element formulation. Int. J. Numer. Methods Engrg. 46, 1961–1986 (1999)

    Article  MATH  Google Scholar 

  5. Skallerud, B., Myklebust, L.I., Haugen, B.: Nonlinear response of shell structures: effects of plasticity modelling and large rotations. Thin-Walled Struct. 39, 463–482 (2001)

    Article  Google Scholar 

  6. Zeng, Q., Combescure, A., Arnaudeau, F.: An efficient plasticity algorithm for shell elements application to metal forming simulation. Comput. Struct. 79, 1525–1540 (2001)

    Article  Google Scholar 

  7. Ambati, M., Kiendl, J., De Lorenzis, L.: Isogeometric Kirchhoff-Love shell formulation for elasto-plasticity. Comput. Methods Appl. Mech. Engrg. 340, 320–339 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brank, B., Perić, D.: On large deformations of thin elastoplastic shell simplementation of a finite rotation model for quadrilateral shell element. Internat. J. Numer. Methods Engrg. 40, 689–726 (1997)

    Article  MATH  Google Scholar 

  9. Cortivo, N.D., Felippa, C.A., Bavestrello, H., Silva, W.T.M.: Plastic buckling and collapse of thin shell structures, using layered plastic modeling and co-rotational ANDES finite elements. Comput. Methods Appl. Mech. Engrg. 198(5–8), 785–798 (2009)

    Article  MATH  Google Scholar 

  10. Wagner, W., Gruttmann, F.: A robust nonlinear mixed hybrid quadrilateral shell element. Internat. J. Numer. Methods Engrg. 64, 635–666 (2005)

    Article  MATH  Google Scholar 

  11. Sorić, J., Montag, U., Krätzig, W.B.: An efficient formulation of integration algorithms for elastoplastic shell analysis based on layered finite element approach. Comput. Methods Appl. Mech. Engrg. 148, 315–328 (1997)

    Article  MATH  Google Scholar 

  12. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report No. MBS96–1-UIC, University of Illinois, Chicago (1996)

  13. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. J. Mech. Des. 122(4), 498–507 (2000)

    Article  Google Scholar 

  14. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: History, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)

    Article  Google Scholar 

  15. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)

  16. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18(1), 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Shabana, A.A., Hamed, A.M., Mohamed, A.N.A., Jayakumar, P., Letherwood, M.D.: Use of B-spline in the finite element analysis: comparison with ANCF geometry. J. Comput. Nonlinear Dyn. 7(1), 011008 (2011)

  19. Yamashita, H., Sugiyama, H.: Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation. Nonlinear Dyn. 67(1), 177–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1(2), 103–108 (2006)

    Article  Google Scholar 

  22. Dmitrochenko, O.N., Pogorelov, D.Y.U.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  23. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn. 219(4), 345–355 (2005)

  24. Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70(3), 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  26. Ambrósio, J.A.C., Nikravesh, P.E.: Elasto-plastic deformations in multibody dynamics. Nonlinear Dyn. 3, 85–104 (1992)

    Article  Google Scholar 

  27. Sugiyama, H., Shabana, A.A.: Application of plasticity theory and absolute nodal coordinate formulation to flexible multibody system dynamics. J. Mech. Des. 126(3), 478–487 (2004)

    Article  Google Scholar 

  28. Sugiyama, H., Shabana, A.A.: On the use of implicit integration methods and the absolute nodal coordinate formulation in the analysis of elasto-plastic deformation problems. Nonlinear Dyn. 37, 245–270 (2004)

    Article  MATH  Google Scholar 

  29. Gerstmayr, J.: The absolute coordinate formulation with elasto-plastic deformations. Multibody Syst. Dyn. 12, 363–383 (2004)

    Article  MATH  Google Scholar 

  30. Gerstmayr, J., Matikainen, M.K.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Des. Struct. Mach. 34(4), 409–430 (2006)

    Article  Google Scholar 

  31. Wang, Q.T., Tian, Q., Hu, H.Y.: Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation. Acta Mech. Sin. 32(3), 525–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. de Souza Neto, E.A., Perić, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley (2008)

  33. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  34. Simo, J.C., Govindjee, S.: Exact closed-form solution of the return mapping algorithm in plane stress elasto-viscoplasticity. Eng. Comput. 5(3), 254–258 (1988)

    Article  Google Scholar 

  35. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  36. Green, A.E., Naghdi, P.M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Eng. Sci. 9(12), 1219–1229 (1971)

    Article  MATH  Google Scholar 

  37. Simo, J.C., Taylor, R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Engrg. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  38. Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Internat. J. Numer. Methods Engrg. 22, 649–670 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kleiber, M., Kowalczyk, P.: Sensitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity. Comput. Methods Appl. Mech. Engrg. 137, 395–409 (1996)

    Article  MATH  Google Scholar 

  40. Crisfield, M.A.: A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 13, 55–62 (1981)

    Article  MATH  Google Scholar 

  41. Lam, W.F., Morley, C.T.: Arc-length method for passing limit points in structural calculation. J. Struct. Eng. 118, 169–185 (1992)

    Article  Google Scholar 

  42. Feng, Y.T., Perić, D., Owen, D.R.J.: A new criterion for determination of initial loading parameter in arc-length method. Comput. Struct. 58(3), 479–485 (1996)

    Article  MATH  Google Scholar 

  43. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University, New York (2005)

    Book  MATH  Google Scholar 

  44. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54(4), 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shabana, A.A., Hussein, B.A.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327(3–5), 557–563 (2009)

    Article  Google Scholar 

  46. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), (2009)

  47. Arnold, M., Brüls, O.: Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dvorkin, E.N., Pantuso, D., Repetto, E.A.: A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput. Methods Appl. Mech. Engrg. 125, 17–40 (1995)

    Article  Google Scholar 

  50. Eberlein, R., Wriggers, P.: Finite element concepts for finite elastoplastic strains and isotropic stress response in shells theoretical and computational analysis. Comput. Methods Appl. Mech. Engrg. 171, 243–279 (1999)

    Article  MATH  Google Scholar 

  51. Areias, P.M.A., Ritto-Corrêa, M.C., Martins, J.A.C.: Finite strain plasticity, the stress condition and a complete shell model. Comput. Mech. 45(2–3), 189–209 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34, 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundations of China under Grants 11832005 and 12072026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Hu.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, C., Hu, H. et al. Analysis of elasto-plastic thin-shell structures using layered plastic modeling and absolute nodal coordinate formulation. Nonlinear Dyn 105, 2899–2920 (2021). https://doi.org/10.1007/s11071-021-06766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06766-9

Keywords

Navigation