Skip to main content

Advertisement

Log in

Fluid–structure coupling modelling and parameter optimization of a direct-acting relief valve for underwater application

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Direct-acting relief valve is widely applied in pumps for control of pump pressure; when it is applied by underwater equipment, its dynamic stability is challenged by the varied hydraulic pressure due to the variation of its underwater penetration; specifically, sudden jumps of pump pressure can be triggered, which brings harmful influence on the normal working condition of underwater equipment. In order to fully understand this phenomenon, a two-degree-of-freedom fluid–structure coupling model is developed by considering both the axial and longitudinal vibro-impacts between the valve element and the valve seat, whose external excitation comes from the flowing fuel which has been accelerated to a high speed in the narrow channel of relief valve. Based on the developed mathematical model, the predicted errors about the water depth for appearance of the sudden jump of pressure are verified within 5% when compared with the corresponding experimental results. Moreover, the axial vibro-impact oscillation of the valve element is demonstrated as the origin of such drastic fluctuation of pump pressure. In order to further control the sudden jumps of pressure, parameter optimization with reliability analysis is carried out via an optimization closed loop which consists of design of experiment algorithm, Monte Carlo algorithm and six sigma algorithm. Based on the optimized combination of parameters, the pressure stability of the direct-acting relief valve is secured within its working water depth as [0 m, 300 m], and the differential pressure at the valve port remains a linear variation without sudden jump, and the maximal change of the differential pressure is around 3.6 MPa, which is determined by the variation of water depth.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Hao, Q., Wu, W., Liang, X.: Effects of structure parameters on abnormal opening of pilot-operated relief valve under alternating pressure. IEEE Access 7, 33932–33942 (2019)

    Article  Google Scholar 

  2. Bukowski, J.V., Goble, W.M., Gross, R.E.: Analysis of spring operated pressure relief valve proof test data: findings and implications. Process Saf. Prog. 37(4), 467–477 (2018)

    Article  Google Scholar 

  3. Hyunjun, K., Sanghyun, K.: Optimization of operation parameters for direct spring loaded pressure relief valve in a pipeline system. J. Press. Vessel Technol. 140(5), 051603051603 (2018)

    Google Scholar 

  4. Lei, J., Tao, J., Liu, C.: Flow model and dynamic characteristics of a direct spring loaded poppet relief valve. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232(9), 1657–1664 (2018)

    Article  Google Scholar 

  5. Guan, C., Jiao, Z., Wu, S., Shang, Y., Zheng, F.: Active control of fluid pressure pulsation in hydraulic pipe system by bilateral-overflow of piezoelectric direct-drive slide valve. J. Dyn. Syst. Meas. Control Trans. ASME 136(3), 031025 (2014)

    Article  Google Scholar 

  6. Beune, A., Kuerten, J., Van Heumen, M.: CFD analysis with fluid–structure interaction of opening high-pressure safety valves. Comput. Fluid 64, 108–116 (2012)

    Article  Google Scholar 

  7. Gabor, L., Alan, C., Csaba, H.: Nonlinear analysis of a single stage pressure relief valve. Iaeng Int. J. Appl. Math. 39(4), 1–14 (2009)

    MathSciNet  Google Scholar 

  8. Wu, S., Li, C., Deng, Y.: Stability analysis of a direct-operated seawater hydraulic relief valve under deep sea. In: Mathematical Problems in Engineering, p. 5676317 (2017)

  9. Li, Y.: Hopf bifurcations in general systems of Brusselator type. Nonlinear Anal. Real World Appl. 28, 32–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bolin, C., Engeda, A.: Analysis of flow-induced instability in a redesigned steam control valve. Appl. Therm. Eng. 83, 40–47 (2015)

    Article  Google Scholar 

  11. Eyres, R.D., Piiroinen, P.T., Champneys, A.R.: Grazing bifurcations and chaos in the dynamics of a hydraulic damper with relief valves. SIAM J. Appl. Dyn. Syst. 4(4), 1075–1106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liao, M., Liu, Y., Páez Chávez, J., Chong, A.S.E., Wiercigroch, M., Wiercigroch, M.: Dynamics of vibro-impact drilling with linear and nonlinear rock. Int. J. Mech. Sci. 146, 200–210 (2018)

    Article  Google Scholar 

  13. Liao, M., Ing, J., Páez Chávez, J., Wiercigroch, M.: Bifurcation techniques for stiffness identification of an impact oscillator. Commun. Nonlinear Sci. Numer. Simul. 41, 19–31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, M., Ing, J., Sayah, M., Wiercigroch, M.: Dynamic method of stiffness identification in impacting systems for percussive drilling applications. Mech. Syst. Signal Process. 80, 224–244 (2016)

    Article  Google Scholar 

  15. Xu, Y., Zhang, H., Guan, Z.: Dynamic characteristics of downhole bit load and analysis of conversion efficiency of drill string vibration energy. Energies 14(1), 229 (2021)

    Article  Google Scholar 

  16. Hos, C.J., Champneys, A.R., Paul, K.: Dynamic behavior of direct spring loaded pressure relief valves: III valves in liquid service. J. Loss Prev. Process Ind. 43, 1–9 (2016)

    Article  Google Scholar 

  17. Hos, C.J., Champneys, A.R.: Grazing bifurcations and chatter in a pressure relief valve model. Physica D 241(22), 2068–2076 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ma, W., Ma, F., Zhou, Z., Geng, X.: Bifurcation analysis and experiment of direct-acting relief valve. Vib. Test. Diagn. 36(3), 529–535+606 (2016)

  19. Facchinetti, M.L., Langre, E.D., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2019)

    Article  Google Scholar 

  20. Kundu, S., Pani, A.K.: Stabilization of Kelvin–Voigt viscoelastic fluid flow model. Appl. Anal. 98(12), 2284–2307 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, F., Dai, H., Wang, L.: Vortex-induced vibrations of a pipe subjected to unsynchronized support motions. J. Mar. Sci. Technol. 23(4), 978–990 (2018)

    Article  Google Scholar 

  22. Sha, Y., Wang, Y.: Vortex induced vibrations of finned cylinders. J. Hydrodyn. 20, 195–201 (2008)

    Article  Google Scholar 

  23. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  24. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser with weak structural nonlinearity excited by wakes. J. Sound Vib. 34(3), 685–699 (2008)

    Article  Google Scholar 

  25. Violette, R., Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85(11–14), 1134–1141 (2007)

    Article  Google Scholar 

  26. Lin, L., Ling, G., Wu, Y.: Nonlinear fluid damping in structure-wake oscillators in modeling vortex-induced vibrations. J. Hydrodyn. 21(1), 1–11 (2009)

    Article  Google Scholar 

  27. Doan, V.P., Nishi, Y.: Modeling of fluid–structure interaction for simulating vortex-induced vibration of flexible riser: finite difference method combined with wake oscillator model. J. Mar. Sci. Technol. 20(2), 309–321 (2015)

    Article  Google Scholar 

  28. Chen, J., Li, Q.: Nonlinear dynamics of a fluid–structure coupling model for vortex-induced vibration. Int. J. Struct. Stab. Dyn. 19(7), 1950071 (2019)

    Article  MathSciNet  Google Scholar 

  29. Santra, S., Greenblatt, D.: Dynamic stall control model for pitching airfoils with slot blowing. AIAA J. 59(1), 400–404 (2020)

    Article  Google Scholar 

  30. Mallik, W., Santra, S.: Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control. Nonlinear Dyn. 100, 1441–1456 (2020)

    Article  MATH  Google Scholar 

  31. Joby, M., Santra, S., Anthoni, M.: Finite-time contractive boundedness of extracorporeal blood circulation process. Appl. Math. Comput. 388, 125527 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Y., Ren, X., Wu, D., Li, D., Li, X.: Simulation and analysis of a seawater hydraulic relief valve in deep-sea environment. Ocean Eng. 125, 182–190 (2016)

    Article  Google Scholar 

  33. Wu, W., Tian, G., Hao, Q.: Analysis and optimization of abnormal opening of main valve of relief valve under alternating pressure. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 046(007), 78–83 (2018)

    Google Scholar 

  34. Liao, M., Zhou, Y., Su, Y., Lian, Z., Jiang, H.: Dynamic analysis and multi-objective optimization of an offshore drilling tube system with pipe-in-pipe structure. Appl. Ocean Res. 75, 85–99 (2018)

    Article  Google Scholar 

  35. Van der Velden, A.: Isight design optimization methodologies. In: ASM Handbook (2010)

  36. Chen, X., Yu, X., Ji, B.: Study of crankshaft strength based on Isight platform and DOE methods. IEEE Comput. Soc. 3(3), 548–551 (2010)

    Google Scholar 

  37. Yin, B., Xu, D., An, Y., Chen, Y.: Aerodynamic optimization of 3D wing based on Isight. Appl. Math. Mech 29(5), 603–610 (2008)

    Article  MATH  Google Scholar 

  38. Koch, P.N., Evans, J.P., Powell, D.: Interdigitation for effective design space exploration using Isight. Struct. Multidiscip. Optim. 23(2), 111–126 (2002)

    Article  Google Scholar 

  39. Baril, C., Yacout, S., Clement, B.: Design for Six Sigma through collaborative multi-objective optimization. Comput. Ind. Eng. 60(1), 43–55 (2011)

    Article  Google Scholar 

  40. Asafuddoula, M., Singh, H.K., Ray, T.: Six-Sigma robust design optimization using a many-objective decomposition-based evolutionary algorithm. IEEE Trans. Evol. Comput. 19(4), 490–507 (2015)

    Article  Google Scholar 

  41. Shirazi, B., Fazlollahtabar, H., Mahdavi, I.: A six sigma based multi-objective optimization for machine grouping control in flexible cellular manufacturing systems with guide-path flexibility. Adv. Eng. Softw. 41(6), 865–873 (2010)

    Article  MATH  Google Scholar 

  42. Ray, T., Asafuddoula, M., Singh, H.K., Alam, K.: An approach to identify Six-Sigma robust solutions of multi/many-objective engineering design optimization problems. J. Mech. Des. 137(5), 051404 (2015)

    Article  Google Scholar 

  43. Zhang, X., Lu, Z., Cheng, K., Wang, Y.: A novel reliability sensitivity analysis method based on directional sampling and Monte Carlo simulation. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 234(4), 622–635 (2020)

    Article  Google Scholar 

  44. Zhou, L., Cai, G., Yang, J., Jia, L.: Monte-Carlo simulation based on FTA in reliability analysis of door system. In: International Conference on Computer and Automation Engineering, Singapore, Singapore (2010)

  45. Li, F., Brown, R.E., Freeman, L.A.A.: A linear contribution factor model of distribution reliability indices and its applications in Monte Carlo simulation and sensitivity analysis. IEEE Trans. Power Syst. 18(3), 1213–1215 (2003)

    Article  Google Scholar 

  46. Madah, F.A.: The amplitudes and phases of tidal constituents from Harmonic Analysis at two stations in the Gulf of Aden. Earth Syst. Environ. 4, 321–328 (2020)

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (No. 51904018), Natural Science Foundation of Beijing Municipality (No. 3204049) and Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (No. FRF-IDRY-19-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Zheng, Y., Gao, Z. et al. Fluid–structure coupling modelling and parameter optimization of a direct-acting relief valve for underwater application. Nonlinear Dyn 105, 2935–2958 (2021). https://doi.org/10.1007/s11071-021-06740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06740-5

Keywords

Navigation