Skip to main content
Log in

Numerical simulation of shallow water waves based on generalized equal width (GEW) equation by compact local integrated radial basis function method combined with adaptive residual subsampling technique

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The shallow water equation based on the generalized equal width (GEW) equation is a PDE that can be classified in the category of hyperbolic PDEs. The current paper concerns developing an efficient and robust numerical technique to solve the shallow water equation based on the generalized equal width model. For this aim, first, the space derivative is approximated by the local collocation method via a compact integrated radial basis function. Second, the time derivative is approximated by the method of lines that yields a system of nonlinear ODEs. Furthermore, the constructed system of ODEs is solved by a fourth-order algorithm to get high-numerical results. Also, an adaptive collocation method based upon IRBF is presented for the solution of GEW. The effectiveness of our adaptive technique is shown in four examples such as interpolation, the motion of single solitary, two solitary waves and Maxwellian initial condition. It is explained in detail how the adaptive method refines the resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Archilla, B.G.: A spectral method for the equal width equation. J. Comput. Phys. 125, 395–402 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behrens, J., Iske, A., Kaser, M.: Adaptive meshfree method of backward characteristics for nonlinear transport equations, In: Meshfree Methods for Partial Differential Equations (Bonn, 2001). Lecture Notes in Computer Science Engineering, vol. 26, pp. 21–36. Springer, Berlin (2003)

  3. Behrens, J., Iske, A.: Grid-free adaptive semi-Lagrangian advection using radial basis functions. Comput. Math. Appl. 43(3–5), 319–327 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhowmik, S.K., Karakoc, S.B.G.: Numerical solutions of the generalized equal width wave equation using the Petrov–Galerkin method. Appl. Anal. 100(4), 714–734 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16, 375–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Salehi, R.: The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas. Comput. Phys. Commun. 182(12), 2540–2549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53(6), 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esen, A.: A numerical solution of the equal width wave equation by a lumped Galerkin method. Appl. Math. Comput. 168(1), 270–282 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Esen, A.: A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines. Int. J. Comput. Math. 83(5–6), 449–459 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evan, D.J., Raslan, K.R.: Solitary waves for the generalized equal width (GEW) equation. Int. J. Comput. Math. 82(4), 445–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  14. Garcia-Lopez, C.M., Ramos, J.I.: Effects of convection on a modified GRLW equation. Appl. Math. Comput. 219(8), 4118–4132 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Gardner, L.R.T., Gardner, G.A., Ayoub, F.A., Amein, M.K.: Simulations of the EW undular bore. Commun. Numer. Methods Eng. 13, 583–592 (1997)

    Article  MATH  Google Scholar 

  16. Gardner, L.R.T., Gardner, G.A.: Solitary waves of the equal width wave equation. J. Comput. Phys. 101, 218–223 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hereman, W., Zhuang, W.: A MACSYMA program for the Hirota method. In: Proceedings of the 13th World Congress on Computation and Applied Mathematics, vol. 2, pp. 842–863 (1991)

  18. Hereman, W., Zhuang, W.: Symbolic computation of solitons with Macsyma. Comput. Appl. Math. II: Differ. Equ. 287–296 (1992)

  19. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition, I. KdV-type bilinear equations. J. Math. Phys. 28(8), 1732–1742 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition, II. mKdV-type bilinear equations. J. Math. Phys. 28(9), 2094–2101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirota, R.: A new form of Bac̈klund transformations and its relation to the inverse scattering problem. Prog. Theor. Phys. 52(5), 1498–1512 (1974)

    Article  MATH  Google Scholar 

  22. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  23. Hirota, R., Satsuma, J.: N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Jpn. 40(2), 611–612 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32(1), 13–25 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hon, Y.C.: Multiquadric collocation method with adaptive technique for problems with boundary layer. Int. J. Appl. Sci. Comput. 6(3), 173–184 (1999)

    MathSciNet  Google Scholar 

  26. Karakoc, S.B.G., Zeybek, H.: A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation. Stat. Optim. Inf. Comput. 4, 30–41 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khalifa, A.K., Raslan, K.R.: Finite difference methods for the equal width wave equation. J. Egypt. Math. Soc. 7, 239–249 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Khaliq, A.Q.M., Martin-Vaquero, J., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction–diffusion systems with non-smooth data. J. Comput. Appl. Math. 223, 374–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  31. Li, W., Nguyen-Thanh, N., Huang, J., Zhou, K.: Adaptive analysis of crack propagation in thin-shell structures via an isogeometric-meshfree moving least-squares approach. Comput. Methods Appl. Mech. Eng. 358, 112613 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, J., Zhang, Y., Wang, Y.: Topological soliton solutions for three shallow water waves models. Waves Random Complex Media 28(3), 508–515 (2018)

    Article  MathSciNet  Google Scholar 

  33. Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations. Commun. Comput. Phys. 17, 510–541 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mai-Duy, N., Tran-Cong, T.: An efficient indirect RBFN-based method for numerical solution of PDEs. Numer. Methods PDE 21(4), 770–790 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mai-Duy, N., Tran-Cong, T.: A compact five-point stencil based on integrated RBFs for 2D second-order differential problems. J. Comput. Phys. 235, 302–321 (2013)

    Article  MathSciNet  Google Scholar 

  36. Morrison, P.J., Meiss, J.D., Carey, J.R.: Scattering of RLW solitary waves. Phys. D 11, 324–336 (1984)

    Article  MathSciNet  Google Scholar 

  37. Nguyen-Thanh, N., Li, W., Huang, J., Srikanth, N., Zhou, K.: An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems. Int. J. Numer. Methods Eng. 120(2), 209–230 (2019)

    Article  MathSciNet  Google Scholar 

  38. North, G.R., Pyle, J.A., Zhang, F.: Encyclopedia of Atmospheric Sciences, 2nd edn., pp. 1–6. Academic Press, London (2014)

    Google Scholar 

  39. Oruc, O.: Delta-shaped basis functions-pseudospectral method for numerical investigation of nonlinear generalized equal width equation in shallow water waves. Wave Motion 101, 102687 (2021)

    Article  MathSciNet  Google Scholar 

  40. Raslan, K.R.: A computational method for the equal width equation. Int. J. Comput. Math. 81, 63–72 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Raslan, K.R.: Collocation method using cubic B-spline for the generalized equal width equation. Int. J. Simul. Process Model. 2(1–2), 37–44 (2006)

  42. Roshan, T.: A Petrov–Galerkin method for solving the generalized equal width (GEW) equation. J. Comput. Appl. Math. 235, 1641–1652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sarra, S.A.: Integrated multiquadric radial basis function approximation methods. Comput. Math. Appl. 51(8), 1283–1296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sarra, S.A.: Adaptive radial basis function methods for time dependent partial differential equations. Appl. Numer. Math. 54(1), 79–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shu, C., Wu, Y.L.: Integrated radial basis functions-based differential quadrature method and its performance. Int. J. Numer. Methods Fluids 53(6), 969–984 (2007)

    Article  MATH  Google Scholar 

  47. Soliman, A.A., Abdou, M.A.: Numerical solutions of nonlinear evolution equations using variational iteration method. J. Comput. Appl. Math. 207(1), 111–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Thabet, H., Kendre, S., Peters, J., Kaplan, M..: Solitary wave solutions and traveling wave solutions for systems of time-fractional nonlinear wave equations via an analytical approach. Comput. Appl. Math. 39, 1–19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thai-Quang, N., Mai-Duy, N., Tran, C.-D., Tran-Cong, T.: High-order alternating direction implicit method based on compact integrated-RBF approximations for unsteady/steady convection-diffusion equations. Comput. Model. Eng. Sci. 89(3), 189–220 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Tien, C.M.T., Thai-Quang, N., Mai-Duy, N., Tran, C.-D., Tran-Cong, T.: A three-point coupled compact integrated RBF scheme for second-order differential problems. Comput. Model. Eng. Sci. 104(6), 425–469 (2015)

    Google Scholar 

  51. Tien, C.M.T., Mai-Duy, N., Tran, C.D., Tran-Cong, T.: A numerical study of compact approximations based on flat integrated radial basis functions for second-order differential equations. Comput. Math. Appl. 72(9), 2364–2387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Uddin, M.: RBF-PS scheme for solving the equal width equation. Appl. Math. Comput. 222, 619–631 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Wazwaz, A.M.: The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201(1–2), 489–503 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94(4), 2655–2663 (2018)

    Article  Google Scholar 

  55. Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

  56. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85(2), 731–737 (2016)

    Article  MathSciNet  Google Scholar 

  57. Wazwaz, A.M.: The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154(3), 713–723 (2004)

    MathSciNet  MATH  Google Scholar 

  58. Zaki, S.I.: A least-squares finite element scheme for the EW equation. Comput. Methods Appl. Mech. Eng. 189, 587–594 (2000)

  59. Zaki, S.I.: Solitary waves induced by the boundary forced EW equation. Comput. Methods Appl. Mech. Eng. 190, 4881–4887 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zheng, S.: Nonlinear evolution equations. In: Zheng, S.M. (ed.) Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Boca Raton (2004)

  61. Abbaszadeh, M., Dehghan, M.: The two–grid interpolating element free Galerkin (TG-IEFG) method for solving Rosenau-regularized long wave (RRLW) equation with error analysis. Appl. Anal. 97(7), 1129–1153 (2018)

  62. Abbaszadeh, M., Dehghan, M.: The interpolating element free Galerkin method for solving Korteweg-de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn. 96, 1345–1365 (2019)

  63. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate, J. Comput. Appl. Math. 286, 211–231 (2015)

  64. Shokri, A., Dehghan, M.: A meshless method the using radial basis functions for numerical solution of the regularized long wave equation. Numer. Methods PartialDiffer. Eqn. 26(2), 807–825 (2010)

Download references

Acknowledgements

We thank the reviewers for their thorough review and the comments and suggestions, which significantly contributed to improving the quality of this publication

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Ethics declarations

Funding

No funds, grants or other support were received.

Availability of data and material

No datasets were generated or analyzed during the current study.

Code availability

The authors use the MATLAB 9.6 software.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This material is the authors’ own original work, which has not been previously published elsewhere.

Consent to participate

The authors voluntarily agree to participate in this research study.

Consent for publication

The authors would like to submit this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure g
figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimijahan, A., Dehghan, M. & Abbaszadeh, M. Numerical simulation of shallow water waves based on generalized equal width (GEW) equation by compact local integrated radial basis function method combined with adaptive residual subsampling technique. Nonlinear Dyn 105, 3359–3391 (2021). https://doi.org/10.1007/s11071-021-06733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06733-4

Keywords

Mathematics Subject Classification

Navigation