Skip to main content
Log in

Study on initial value problem for fractional-order cubature Kalman filters of nonlinear continuous-time fractional-order systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To realize the state estimation of nonlinear continuous-time fractional-order systems, two types of fractional-order cubature Kalman filters are designed to solve problem on the initial value influence. For the first type of cubature Kalman filter (CKF), the initial value of the estimated system is also regarded as the augmented state, and the augmented state equation is constructed to obtain the CKF based on Grünwald–Letnikov difference. For the second type of CKF, the fractional-order hybrid extended-cubature Kalman filter is proposed to weaken the influence of initial value by the first-order Taylor expansion and the third-order spherical-radial rule. These two methods can reduce the influence of initial value on the state estimation effectively. Finally, the effectiveness of the proposed CKFs is verified by two simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  MATH  Google Scholar 

  2. Tarasov, V.E., Tarasova, V.V.: Macroeconomic models with long dynamic memory: fractional calculus approach. Appl. Math. Comput. 338, 466–486 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Liang, B.Y., Zheng, S.Q., Ahn, C.K., Liu, F.: Adaptive fuzzy control for fractional-order interconnected systems with unknown control directions. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3031694

    Article  Google Scholar 

  4. West, B.J., Turalska, M., Grigolini, P.: Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics. Physics 17(4), ID. 045009 (2015)

  5. Zhao, D.Z., Luo, M.K.: Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 346, 531–544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Failla, G., Zingales, M.: Advanced materials modelling via fractional calculus: challenges and perspectives. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378(2172), ID. 20200050 (2020)

  7. Boudjehem, B., Boudjehem, D.: Fractional order controller design for desired response. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 227(2), 243–251 (2013)

    MATH  Google Scholar 

  8. Zhao, H.M., Deng, W., Yang, X.H., Li, X.M., Dong, C.: An optimized fractional order PID controller for suppressing vibration of AC motor. J. Vibroeng. 18(4), 2205–2220 (2016)

    Article  Google Scholar 

  9. Mohan, V., Chhabra, H., Rani, A., Singh, V.: Robust self-tuning fractional order PID controller dedicated to non-linear dynamic system. J. Intell. Fuzzy Syst. 34(3), 1467–1478 (2018)

    Article  Google Scholar 

  10. Pashaei, S., Badamchizadeh, M.: A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. ISA Trans. 63, 39–48 (2016)

    Article  Google Scholar 

  11. Moezi, S.A., Zakeri, E., Eghtesad, M.: Optimal adaptive interval type-2 fuzzy fractional-order backstepping sliding mode control method for some classes of nonlinear systems. ISA Trans. 93, 23–39 (2019)

    Article  Google Scholar 

  12. Ntouskas, S., Sarimveis, H., Sopasakis, P.: Model predictive control for offset-free reference tracking of fractional order systems. Control Eng. Pract. 71, 26–33 (2018)

    Article  Google Scholar 

  13. Necaibia, A., Ladaci, S., Charef, A., Loiseau, J.J.: Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels. Front. Energy 9(1), 43–53 (2015)

    Article  Google Scholar 

  14. Pasha, S.A., Tuan, H.D., Vo, B.N.: Nonlinear Bayesian filtering using the unscented linear fractional transformation model. IEEE Trans. Signal Process. 58(2), 477–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, T.Y., Wei, Y.H., Yin, W.D., Wang, Y., Liang, Q.: State estimation for nonlinear discrete-time fractional systems a Bayesian perspective. Signal Process. 165, 250–261 (2019)

    Article  Google Scholar 

  16. Ljung, L.: Asymptotic-behavior of the extended Kalman filter as a parameter estimator for linear systems. Autom. Control IEEE Trans. 24(1), 36–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Charkhgard, M., Farrokhi, M.: State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 57(12), 4178–4187 (2010)

    Article  Google Scholar 

  18. Wang, X.W., Xu, Z.S., Gou, X.J., Trajkovic, L.: Tracking a maneuvering target by multiple sensors using extended Kalman filter with nested probabilistic-numerical linguistic information. IEEE Trans. Fuzzy Syst. 28(2), 346–360 (2020)

    Article  Google Scholar 

  19. Naseri, F., Kazemi, Z., Farjah, E., Ghanbari, T.: Fast detection and compensation of current transformer saturation using extended Kalman filter. IEEE Trans. Power Deliv. 34(3), 1087–1097 (2019)

    Article  Google Scholar 

  20. Zeng, N.Y., Wang, Z.D., Zhang, H.: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter. Sci. China Inf. Sci. 59(11), ID. 112204 (2016)

  21. Wan, E., Van Der Merwe, R.: The unscented Kalman filter. In: Kalman Filtering and Neural Networks. Wiley, pp 123–174 (2001)

  22. Xiong, K., Zhang, H.Y., Chan, C.W.: Performance evaluation of UKF-based nonlinear filtering. Automatica 42(2), 261–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sarkka, S.: Unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52(9), 1631–1641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arasaratnam, I., Haykin, S., Hurd, T.R.: Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans. Signal Process. 58(10), 4977–4993 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cui, B.B., Wei, X.H., Chen, X.Y., Li, J.Y., Wang, A.C.: Robust cubature Kalman filter based on variational Bayesian and transformed posterior sigma points error. ISA Trans. 86, 18–28 (2018)

    Article  Google Scholar 

  27. Kolås, S., Foss, B.A., Schei, T.S.: Constrained nonlinear state estimation based on the UKF approach. Comput. Chem. Eng. 33(8), 1386–1401 (2009)

    Article  Google Scholar 

  28. Liu, F.H., Gao, Z., Yang, C., Ma, R.C.: Fractional-order Kalman filters for continuous-time fractional-order systems involving correlated and uncorrelated process and measurement noises. Trans. Inst. Meas. Control 41(7), 1933–1947 (2019)

    Article  Google Scholar 

  29. Yang, C., Gao, Z., Liu, F.H.: Kalman filters for linear continuous-time fractional-order systems involving colored noises using fractional-order average derivative. IET Control Theory Appl. 12(4), 456–465 (2018)

    Article  MathSciNet  Google Scholar 

  30. Sierociuk, D., Dzielinski, A.D.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 16(1), 129–140 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Ramezani, A., Safarinejadian, B.: A modified fractional-order unscented Kalman filter for nonlinear fractional-order systems. Circuits Syst. Signal Process. 37(9), 3756–3784 (2018)

  32. Gao, Z.: Cubature Kalman filters for nonlinear continuous-time fractional-order systems with uncorrelated and correlated noises. Nonlinear Dyn. 96, 1805–1817 (2019)

    Article  MATH  Google Scholar 

  33. Ramezani, A., Safarinejadian, B., Zarei, J.: Novel hybrid robust fractional interpolatory cubature Kalman filters. J. Frankl. Inst. 357(1), 704–725 (2020)

  34. Yang, C., Gao, Z., Huang, X.M., Kan, T.: Hybrid extended-cubature Kalman filters for nonlinear continuous-time fractional-order systems involving uncorrelated and correlated noises using fractional-order average derivative. IET Control Theory Appl. 14(11), 1424–1437 (2020)

    Article  Google Scholar 

  35. Huang, X.M., Gao, Z., Chen, X.J.: Extended Kalman filter for linear fractional-order systems with unknown fractional-order. ICIC Express Lett. 14(5), 431–441 (2020)

    Google Scholar 

  36. Prodlubny, I.: Fractional Differential Equation. Academic Press, New York (1999)

    Google Scholar 

  37. Caputo, M.C., Torres, D.F.M.: Duality for the left and right fractional derivatives. Signal Process. 107, 265–271 (2015)

    Article  Google Scholar 

  38. Sierociuk, D., Dzielinski, A.D.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 1(16), 129–140 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Liaoning Revitalization Talents Program under Grant XLYC1807229, China Postdoctoral Science Foundation Funded Project under Grant 2019M651 206, Scientific Research Fund of Liaoning Provincial Education Department, China, under Grant LJC202010 and Liaoning University Science Research Fund LDGY2019020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Gao, Z., Miao, Y. et al. Study on initial value problem for fractional-order cubature Kalman filters of nonlinear continuous-time fractional-order systems. Nonlinear Dyn 105, 2387–2403 (2021). https://doi.org/10.1007/s11071-021-06726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06726-3

Keywords

Navigation