Skip to main content
Log in

Interplay role between dipole interactions and hydrogen bonding on proton transfer dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In almost all works done up to now on proton dynamics in hydrogen-bonded systems, dipole–dipole interactions have been overlooked. Here, we examine the role of these interactions on the dynamics and statistical properties of ions transfer and bonding defects in those systems. A one-dimensional model for hydrogen-bonded chains is investigated by including dipole–dipole interactions created by protons and heavy ion charge movement, generalizing thus the original Antonchenko–Davydov–Zolotaryuk model. The inclusion of dipole–dipole interactions is not only interesting from a physical point of view; it also provides an extraordinary mathematical model, a new class of differential equations possessing several key parameters and many singular straight lines. The dynamics around these singularities gives new information of great interest, such as to better explain analytically the formation of cracks resulting from dislocations observed in semiconductor heterostructures. Despite major individual differences in initial models, our results can generalize the results previously established in DNA, in the wave diffusion by static localized inhomogeneities or by generic time-dependent potentials, in nonlinear discrete electrical transmission lines and many others. Therefore, this work comes, among other things, to present a method of analytical resolution of these new equations. We use dynamic system methods to first determine the crucial parameters of the system (among them is the dipole–dipole interaction coefficient), and then we discuss on bifurcations of phase portraits and vector fields defined by the singular system. These dipole–dipole interactions have crucial effects on the response of nonlinear excitations that can propagate along these hydrogen-bonded systems. For each orbit of phase portraits with corresponding conditions, highlighting the importance of each component in the hydrogen-bonded system with dipole–dipole interactions on the dynamics, we compute all possible exact parametric representations of solutions. Our findings show that, under given parameter conditions, there are smooth solitary wave solutions, periodic wave solutions, periodic peaks, pseudo-peaks, compacton families and obviously kink and antikink solitons, specially interesting in systems with hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Jeffrey, G.A.: An Introduction to Hydrogen Bonding. Oxford Univ Press, Oxford (1997)

    Google Scholar 

  2. Dingley, A.J., Grzesiek, S.: Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J. Am. Chem. Soc. 120, 8293 (1998)

    Article  Google Scholar 

  3. Mukherjee, S., Majumdar, S., Bhattacharyya, D.: Solvation dynamics in the water pool of an aerosol-OT microemulsion. Effect of sodium salicylate and sodium cholate. J. Phys. Chem. B 109, 10484 (2005)

    Article  Google Scholar 

  4. Pan, Z., Chen, J., Lü, G., Geng, Y.-Z., Zhang, H., Ji, Q.: An ab initio molecular dynamics study on hydrogen bonds between water molecules. J. Chem. Phys. 136, 164313 (2012)

    Article  Google Scholar 

  5. Horowitz, S., Trievel, R.C.: Carbon-oxygen hydrogen bonding in biological structure and function. J. Biol. Chem. 287, 41576 (2012)

    Article  Google Scholar 

  6. Zou, Y., Guo, J., Yin, S.-W., Wang, J.-M., Yang, X.-Q.: Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. J. Agric. Food Chem. 63, 7405 (2015)

    Article  Google Scholar 

  7. Norimatsu, Y., Hasegawa, K., Shimizu, N., Toyoshima, C.: Protein-phospholipid interplay revealed with crystals of a calcium pump. Nature 545, 193 (2017)

    Article  Google Scholar 

  8. Li, P., He, Y., Zhao, Y., Weng, Y., Wang, H., Krishna, R., Wu, H., Zhou, W., O’Keeffe, M., Han, Y., Chen, B.: A rod-packing microporous HB organic framework for highly selective separation of \(C_{2}H_{2}=CO_{2}\) at room temperature. Angew. Chem. Int. Ed. 54, 574–577 (2014)

  9. Wang, H., Li, B., Wu, H., Hu, T.-L., Yao, Z., Zhou, W., Xiang, S., Chen, B.: A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 137, 9963 (2015)

    Article  Google Scholar 

  10. Karmakar, A., Illathvalappil, R., Anothumakkool, B., Sen, A., Samanta, P., Desai, A.V., Kurungot, S., Ghosh, S.K.: Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials. Angew. Chem. Int. Ed. 55, 10667 (2016)

    Article  Google Scholar 

  11. Jakešovaá, M., Apaydin, D.H., Sytnyk, M., Oppelt, K., Heiss, W., Sariciftci, N.S., lowacki, E.D.G.: Hydrogen-bonded organic semiconductors as stable photoelectrocatalysts for efficient hydrogen peroxide photosynthesis. Adv. Funct. Mater. 26, 5248 (2016)

    Article  Google Scholar 

  12. Lin, Y., Jiang, X., Kim, S.T., Alahakoon, S.B., Hou, X., Zhang, Z., Thompson, C.M., Smaldone, R.A., Ke, C.: An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. Am. Chem. Soc. 139, 7172 (2017)

    Article  Google Scholar 

  13. Li, S.-S., Huang, C.-Y., Hao, J.-J., Wang, C.-S.: A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H\(\Delta \Delta \Delta \)O: C and C-H\(\Delta \Delta \Delta \)O: C hydrogen-bonded complexes. J. Comput. Chem. 35, 415 (2013)

    Article  Google Scholar 

  14. Melchor, J.P., McVoy, L., Nostrand, W.E.V.: Charge alterations of E22 enhance the pathogenic properties of the amyloid \(\beta \)-protein. J. Neurochem. 74, 2209 (2008)

    Article  Google Scholar 

  15. Lemkul, J.A., Huang, J., MacKerell, A.D.: Induced dipole–dipole interactions influence the unfolding pathways of wild-type and mutant amyloid \(\beta \)-peptides. J. Phys. Chem. B 119, 15574 (2015)

    Article  Google Scholar 

  16. Zhang, Y., Li, Y., Liu, W.: Dipole–dipole and H-bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels. Adv. Funct. Mater. 25, 471 (2014)

    Article  Google Scholar 

  17. Hu, Y., Miao, K., Peng, S., Zha, B., Xu, L., Miao, X., Deng, W.: Structural transition control between dipole–dipole and hydrogen bonds induced chirality and achirality. CrystEngComm 18, 3019 (2016)

    Article  Google Scholar 

  18. Antonchenko, V.Y., Davydov, A.S., Zolotariuk, A.V.: Solitons and proton motion in ice-like structures. Phys. Status Solidi (b) 115, 631 (1983)

    Article  MathSciNet  Google Scholar 

  19. Zolotaryuk, A.V.: One-dimensional lattice dynamics of hydrogen bonded systems. Theor. Math. Phys. 68, 916 (1986)

    Article  Google Scholar 

  20. Hochstrasser, D., Büttner, H., Desfontaines, H., Peyrard, M.: Solitons in hydrogen-bonded chains. Phys. Rev. A 38, 5332 (1988)

    Article  Google Scholar 

  21. Bountis, T. (ed.): Proton Transfer in Hydrogen-Bonded Systems. NATO ASI Series (Series B: Physics), vol. 291. Plenum Press, New York (1992)

    Google Scholar 

  22. Peyrard, M.: Nonlinear Excitations in Biomolecules, edited by S.-V. B. H. GmbH. Springer, Berlin (1995)

    Book  Google Scholar 

  23. Tsironis, G.P., Pnevmatikos, S.: Proton conductivity in quasi-one-dimensional hydrogen-bonded systems: nonlinear approach. Phys. Rev. B 39, 7161 (1989)

    Article  Google Scholar 

  24. Kashimori, Y., Chien, F., Nishimoto, K.: Theoretical study of soliton dynamics of a finite one-dimensional hydrogen-bonded system. Chem. Phys. 107, 389 (1986)

    Article  Google Scholar 

  25. Xun-Ling, Y., Rui-Xin, D., Xiao-Feng, P.: Dynamic properties of proton transfer in the anharmonic-interaction hydrogen bond systems. Commun. Theor. Phys. 35, 615 (2001)

    Article  Google Scholar 

  26. Tchakoutio Nguetcho, A.S., Kofane, T.C.: Soliton patterns and breakup thresholds in hydrogen-bonded chains. Eur. Phys. J. B 57, 411 (2007)

    Article  Google Scholar 

  27. Li, J., Chen, F., Tchakoutio Nguetcho, A.S.: Bifurcations and exact solutions in a model of hydrogen-bonded-chains. Int. J. Bifurc. Chaos 25, 1550062 (2015)

  28. Karpan, V.M., Zolotaryuk, Y., Christiansen, P.L., Zolotaryuk, A.V.: Discrete kink dynamics in hydrogen-bonded chains: the one-component model. Phys. Rev. E 66, 066603 (2002)

    Article  Google Scholar 

  29. Goryainov, S.: A model of phase transitions in double-well Morse potential: application to hydrogen bond. Phys. B 407, 4233 (2012)

    Article  Google Scholar 

  30. Stépán, G.: Nonlinear modelling of shimmying wheels. In: Christiansen, P.L., Eilbeck, J.C., Parmentier, R.D. (eds.) Future Directions of Nonlinear Dynamics in Physical and Biological Systems. NATO ASI Series (Series B: Physics), vol. 312. Springer, Boston (1993)

  31. Hobbs, P.V.: Ice Physics (Oxford Classic Texts in the Physical Sciences). Oxford University Press, Oxford (2010)

    Google Scholar 

  32. Christiansen, P.L., Eilbeck, J.C., Parmentier, R.D.: Future Directions of Nonlinear Dynamics in Physical and Biological Systems, edited by L. NATO ASI Series. Springer, Berlin (1993)

    Book  Google Scholar 

  33. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  34. Chochliouros, I., Pouget, J.: Transport properties in a hydrogen-bonded chain model including dipole–dipole interactions. J. Phys.: Condens. Matter 7, 8741 (1995)

    MATH  Google Scholar 

  35. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  36. Han, H.B., Li, H.J., Dai, C.Q.: Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schrödinger equation. Appl. Math. Lett. 120, 107302 (2021)

    Article  Google Scholar 

  37. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 1957 (2019)

    Article  MATH  Google Scholar 

  38. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733 (2020)

    Article  Google Scholar 

  39. Tchakoutio Nguetcho, A.S., Nkeumaleu, A.S., Bilbault, J.M.: Behavior of gap solitons in anharmonic lattices. Phys. Rev. E 96, 022207 (2017)

    Article  MathSciNet  Google Scholar 

  40. Wamba, E., Tchakoutio Nguetcho, A.S.: Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach. Phys. Rev. E 97, 052207 (2018)

    Article  MathSciNet  Google Scholar 

  41. Kivshar, Y.S., Kivshar, Y.S.: Optical Solitons : From Fibers to Photonic Crystals. Elsevier, Amsterdam (2003)

    Google Scholar 

  42. Govind-Agrawal, P.: Nonlinear Fiber Optics (Optics and Photonics), 4th edn. Elsevier, Amsterdam (2006)

    Google Scholar 

  43. Nail Akhmediev, A.A.: Solitons: Non-linear Pulses and Beams. Springer US, New York (1997)

    Google Scholar 

  44. Zaviyalov, A., Iliew, R., Egorov, O., Lederer, F.: Multi-soliton complexes in mode-locked fiber lasers. Appl. Phys. B 104, 513 (2011)

    Article  Google Scholar 

  45. Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84 (2012)

  46. Zhao, X., Gorbach, A.V., Skryabin, D.V.: Dispersion of nonlinearity in subwavelength waveguides: derivation of pulse propagation equation and frequency conversion effects. J. Opt. Soc. Am. B 30, 812 (2013)

    Article  Google Scholar 

  47. Gorbach, A., Zhao, X., Skryabin, D.: Dispersion of nonlinearity and modulation instability in subwavelength semiconductor waveguides. Opt. Express 19, 9345 (2011)

    Article  Google Scholar 

  48. Tchakoutio Nguetcho, A.S., Ndjoko, P.B., Kofane, T.C.: Mobility and conductivity of ionic and bonded defects in hydrogen-bonded chains with nonlinear interactions. Eur. Phys. J. B 62, 7 (2008)

    Article  Google Scholar 

  49. Whalley, E.: The distortion of a water molecule in ice. J. Glaciol. 21, 13 (1978)

    Article  Google Scholar 

  50. Joyeux, M., Buyukdagli, S., Sanrey, M.: \(1/f\) fluctuations of DNA temperature at thermal denaturation. Phys. Rev. E 75, 061914 (2007)

    Article  Google Scholar 

  51. Gninzanlong, C.L., Ndjomatchoua, F.T., Tchawoua, C.: Taming intrinsic localized modes in a DNA lattice with damping, external force, and inhomogeneity. Phys. Rev. E 99, 052210 (2019)

    Article  Google Scholar 

  52. Tchakoutio Nguetcho, A.S., Li, J., Bilbault, J.M.: Bifurcations of phase portraits of a singular nonlinear equation of the second class. Commun. Nonlinear Sci. Numer. Simul. 19, 2590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Malomed, B.A., Milchev, A.: Interaction of dislocations with a local defect in an atomic chain with a nonconvex interparticle potential. Phys. Rev. B 41, 4240 (1990)

  54. Paturej, J., Milchev, A., Rostiashvili, V.G., Vilgis, T.A.: Thermal degradation of unstrained single polymer chain: non-linear effects at work. J. Chem. Phys. 134, 224901 (2011)

    Article  Google Scholar 

  55. Li, J., Dai, H.: On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach. Science Press, Beijing (2006)

    Google Scholar 

  56. Tchakoutio Nguetcho, A.S., Li, Jibin, Bilbault, J.M.: Global dynamical behaviors in a physical shallow water system. Commun. Nonlinear Sci. Numer. Simul. 36, 285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tchakoutio Nguetcho, A.S., Nkeumaleu, G.M., Bilbault, J.M.: Anharmonic effects on the dynamic behavior’s of Klein Gordon model’s. Appl. Math. Comput. 403, 126136 (2021)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Serge Tchakoutio Nguetcho.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchouadji Ndjike, M.B., Tchakoutio Nguetcho, A.S., Li, J. et al. Interplay role between dipole interactions and hydrogen bonding on proton transfer dynamics. Nonlinear Dyn 105, 2619–2643 (2021). https://doi.org/10.1007/s11071-021-06723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06723-6

Keywords

Navigation