Skip to main content
Log in

Mechanisms of nonlinear wave transitions in the (2+1)-dimensional generalized breaking soliton equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the transformed nonlinear waves of the (2+1)-dimensional generalized breaking soliton (gBS) equation by analyzing characteristic lines. The N-soliton solution of the gBS equation is obtained by virtue of the Hirota bilinear method, from which the 1-order and 2-order breather wave solutions of the gBS equation are derived by the complexification method. Then, we obtain the condition of the breather wave transformation analytically. Under the condition that the two characteristic lines of the 1-order breather wave are parallel to each other, we show that the 1-order breather wave can be converted into many other types of nonlinear waves, such as M-shaped soliton, oscillation M-shaped soliton, multi-peak soliton, quasi-periodic soliton, etc. Moreover, we give four deformation modes of the 2-order breather wave, including intersection mode of a transformed wave and a breather wave; parallel mode of a transformed wave and a breather wave; intersection mode of two transformed waves; parallel mode of two transformed waves. Finally, we present the graphical analysis of the resulting solutions in order to better understand their dynamical behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    Article  MathSciNet  Google Scholar 

  3. Kawata, T., Inoue, H.: Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions. J. Phys. Soc. Jpn. 44, 1722–1729 (1978)

    Article  MathSciNet  Google Scholar 

  4. Fan, E.G.: The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys. Lett. A 375, 493–497 (2011)

    Article  MathSciNet  Google Scholar 

  5. Peng, W.Q., Tian, S.F., Zhang, T.T.: Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. EPL 123, 50005 (2018)

    Article  Google Scholar 

  6. Peng, W.Q., Tian, S.F., Zhang, T.T.: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Swada equation. Nonlinear Dyn. 93, 1841–1851 (2018)

    Article  Google Scholar 

  7. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  8. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  9. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with timedependent coeffcients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  10. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  Google Scholar 

  11. Fan, E.G., Hon, Y.C.: Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in (2+1) dimensions. Phys. Rev. E 78, 036607 (2008)

    Article  MathSciNet  Google Scholar 

  12. Fan, E.G., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation. J. Math. Phys. 52(2), 797 (2011)

    Article  MathSciNet  Google Scholar 

  13. Hon, Y.C., Fan, E.G.: Binary Bell polynomial approach to the non-isospectral and variable-coefficient KP equations. IMA J. Appl. Math. 77(2), 236–251 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. Philadephia, SIAM, USA (1981)

    Book  Google Scholar 

  15. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambrige University Press, Cambrige (1991)

    Book  Google Scholar 

  16. Hirota, R.: Direct methods in soliton theory. Springer-Verlag Berlin Heideberg (1980)

  17. Matveev, V.B., Salli, M.A.: Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics. Sprige Press, Berlin (1991)

    Book  Google Scholar 

  18. Rogers, C., Shadwick, W.F.: Bäcklund transformations and their applications. Academic Press, New York-London (1982)

    MATH  Google Scholar 

  19. Lou, S.Y., Chen, L.L.: Formally variable separation approach for nonintegrable models. J. Math. Phys. 40, 6491–6500 (1999)

    Article  MathSciNet  Google Scholar 

  20. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer Verlag, New York (1989)

    Book  Google Scholar 

  21. Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wang, L., Wu, X., Zhang, H.Y.: Supperregular breathers and state transitions in aresonant erbium-doped fiber system with higher-order effects. Phys. Lett. A 382, 2650 (2018)

    Article  MathSciNet  Google Scholar 

  23. Xu, G.Q.: Integrability of a (2+1)-dimensional generalized breaking soliton equation. Appl. Math. Lett. 50, 16–22 (2015)

    Article  MathSciNet  Google Scholar 

  24. Calogero, F., Degasperis, A.: Nonlinear evolution equations sovable by the inverse spectral transform I. Nuovo. Cimento. B. 32, 201–42 (1976)

    Article  Google Scholar 

  25. Calogero, F., Degasperis, A.: Nonlinear evolution equations sovable by the spectral transform II. Nuovo. Cimento. B. 32, 20 (1976)

    Article  Google Scholar 

  26. Bogoyavlenskii, O.L.: Breaking solitons in (2+1)-dimensional integrable equations. Russ. Math. Sury. 45, 1–86 (1990)

    Article  Google Scholar 

  27. Radha, R., Lakshmanan, M.: Dromion like structures in the (2+1)-dimensional breaking soliton equation. Phys. Lett. A 197, 7–12 (1995)

    Article  MathSciNet  Google Scholar 

  28. Hu, X.R., Lin, S.N., Wang, L.: Integrability, multiple-cosh, lumps and lump-soliton solutions to a (2+1)-dimensional generalized breaking soliton equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105447 (2020)

    Article  MathSciNet  Google Scholar 

  29. Hu, H.C.: New positon, negaton and complexiton solutions for the Bogoyavlensky-Konoplechenko equation. Phys. Lett. A 373(20), 1750–1753 (2009)

    Article  MathSciNet  Google Scholar 

  30. Lü, X., Li, J.: Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dyn. 77(1–2), 135–143 (2014)

    Article  MathSciNet  Google Scholar 

  31. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation. Phys. Lett. A 382, 1268–1274 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Y., Song, Y., Cheng, L., Ge, J.Y., Wei, W.W.: Exact solutions and painleve analysis of a new (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 68(4), 445–458 (2012)

    Article  MathSciNet  Google Scholar 

  33. Yan, X.W., Tian, S.F., Dong, M.J., Zhou, L., Zhang, T.T.: Chracteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation. Comput. Math. Appl. 76, 179–186 (2018)

    Article  MathSciNet  Google Scholar 

  34. Zhang, X., Wang, L., Liu, C., Li, M., Zhao, Y.C.: High-dimensional nonlinear wave transitions and their mechanisms. Chaos 30, 113107 (2020)

    Article  MathSciNet  Google Scholar 

  35. Yuan, F., Cheng, Y., He, J.S.: Degeneration of breathers in the Kadomttsev-Petviashvili I equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105027 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Fu Tian.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, FF., Tian, SF. Mechanisms of nonlinear wave transitions in the (2+1)-dimensional generalized breaking soliton equation. Nonlinear Dyn 105, 1753–1764 (2021). https://doi.org/10.1007/s11071-021-06672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06672-0

Keywords

Navigation