Skip to main content
Log in

Shifts in control parameter dynamically access individual attractors in a multistable system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose a technique called the power-shift method to discover new attractors and access known attractors in experimental systems by solely shifting the control parameter of a multistable system in situ. Power shifting is a type of incremental perturbation of the control parameter that allows the system to be placed in an otherwise difficult-to-access attractor by using other attractors as steppingstones. We find that by power shifting within certain time windows of the limit cycle, we can reliably access a desired attractor. The power-shift method is demonstrated theoretically with noise using a single-mode coherent model of a laser with injected signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Upon request.

Code availability

Mathematica code.

References

  1. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A. 57, 397–398 (1976). https://doi.org/10.1016/0375-9601(76)90101-8

    Article  MATH  Google Scholar 

  2. Shaw, R.: Strange attractors chaotic behavior, and information flow. Zeitschrift Für Naturforschung A. 36, 80–112 (1981). https://doi.org/10.1515/zna-1981-0115

    Article  MathSciNet  MATH  Google Scholar 

  3. Mandelbrot, B.B.: The Fractal Geometry of Nature, Henry Holt and Company, (1983)

  4. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. In: Hunt, B.R., Li, T.-Y., Kennedy, J.A., Nusse, H.E. (eds.) The Theory of Chaotic Attractors, pp. 273–312. Springer, New York (2004). https://doi.org/10.1007/978-0-387-21830-4_17

    Chapter  Google Scholar 

  5. J. Guckenheimer, P.J: Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, (1983). https://doi.org/10.1007/978-1-4612-1140-2

  6. Thompson, J.M.T., Stewart, H.B.: Nonlinear dynamics and chaos: geometrical methods for engineers and scientists. Wiley (1986)

    MATH  Google Scholar 

  7. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990). https://doi.org/10.1103/PhysRevLett.64.1196

    Article  MathSciNet  MATH  Google Scholar 

  8. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992). https://doi.org/10.1016/0375-9601(92)90745-8

    Article  Google Scholar 

  9. Lai, Y.-C.: Driving trajectories to a desirable attractor by using small control. Phys. Lett. A 221, 375–383 (1996). https://doi.org/10.1016/0375-9601(96)00609-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Pisarchik, A.N.: Controlling the multistability of nonlinear systems with coexisting attractors. Phys. Rev. E. 64, 046203 (2001). https://doi.org/10.1103/PhysRevE.64.046203

    Article  Google Scholar 

  11. Meucci, R., Ciofini, M., Abbate, R.: Suppressing chaos in lasers by negative feedback. Phys. Rev. E. 53, R5537–R5540 (1996). https://doi.org/10.1103/PhysRevE.53.R5537

    Article  Google Scholar 

  12. Martínez-Zérega, B.E., Pisarchik, A.N., Tsimring, L.S.: Using periodic modulation to control coexisting attractors induced by delayed feedback. Phys. Lett. A 318, 102–111 (2003). https://doi.org/10.1016/j.physleta.2003.07.028

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73, 1335–1341 (2013). https://doi.org/10.1007/s11071-013-0866-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Meucci, R., Allaria, E., Salvadori, F., Arecchi, F.T.: Attractor selection in chaotic dynamics. Phys. Rev. Lett. 95, 184101 (2005). https://doi.org/10.1103/PhysRevLett.95.184101

    Article  Google Scholar 

  15. Meucci, R., Poggi, A., Arecchi, F.T., Tredicce, J.R.: Dissipativity of an optical chaotic system characterized via generalized multistability. Opt. Commun. 65, 151–156 (1988). https://doi.org/10.1016/0030-4018(88)90288-X

    Article  Google Scholar 

  16. Gibbs, H.M., Hopf, F.A., Kaplan, D.L., Shoemaker, R.L.: Observation of chaos in optical bistability. Phys. Rev. Lett. 46, 474–477 (1981). https://doi.org/10.1103/PhysRevLett.46.474

    Article  Google Scholar 

  17. Arecchi, F.T., Meucci, R., Puccioni, G., Tredicce, J.: Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q -switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982). https://doi.org/10.1103/PhysRevLett.49.1217

    Article  Google Scholar 

  18. Tredicce, J.R., Arecchi, F.T., Puccioni, G.P., Poggi, A., Gadomski, W.: Dynamic behavior and onset of low-dimensional chaos in a modulated homogeneously broadened single-mode laser: experiments and theory. Phys. Rev. A. 34, 2073–2081 (1986). https://doi.org/10.1103/PhysRevA.34.2073

    Article  Google Scholar 

  19. Dangoisse, D., Glorieux, P., Hennequin, D.: Laser chaotic attractors in crisis. Phys. Rev. Lett. 57, 2657–2660 (1986). https://doi.org/10.1103/PhysRevLett.57.2657

    Article  Google Scholar 

  20. Dangoisse, D., Glorieux, P., Hennequin, D.: Chaos in a CO2 laser with modulated parameters: experiments and numerical simulations. Phys. Rev. A. 36, 4775–4791 (1987). https://doi.org/10.1103/PhysRevA.36.4775

    Article  Google Scholar 

  21. Derozier, D., Bielawski, S., Glorieux, P.: Dynamical behavior of a doped fiber laser under pump modulation. Opt. Commun. 83, 97–102 (1991). https://doi.org/10.1016/0030-4018(91)90529-M

    Article  Google Scholar 

  22. Chizhevsky, V.N.: Coexisting attractors in a CO2 laser with modulated losses. J. Opt. B: Quantum Semiclass. Opt. 2, 711–717 (2000). https://doi.org/10.1088/1464-4266/2/6/302

    Article  Google Scholar 

  23. Chizhevsky, V.N., Corbalán, R., Pisarchik, A.N.: Attractor splitting induced by resonant perturbations. Phys. Rev. E. 56, 1580–1584 (1997). https://doi.org/10.1103/PhysRevE.56.1580

    Article  Google Scholar 

  24. Bandy, D.K., Hall, J.R., Denker, M.E.: Predicting the evolutionary dynamic behavior of a laser with injected signal using Lyapunov exponents. Phys. Rev. A. 92, 013841 (2015). https://doi.org/10.1103/PhysRevA.92.013841

    Article  Google Scholar 

  25. Bandy, D.K., Burton, E.K.T., Hall, J.R., Chapman, D.M., Elrod, J.T.: Predicting attractor characteristics using Lyapunov exponents in a laser with injected signal. Chaos 31, 013120 (2021). https://doi.org/10.1063/5.0018586

    Article  MathSciNet  Google Scholar 

  26. Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D 29, 223–235 (1987). https://doi.org/10.1016/0167-2789(87)90058-3

    Article  MATH  Google Scholar 

  27. Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979). https://doi.org/10.1016/0030-4018(79)90090-7

    Article  Google Scholar 

  28. C O Weiss, Instabilities and chaotic emission of far-infrared NH3-lasers, in: (1986). https://doi.org/10.1117/12.938841.

  29. Abraham, N.B., Narducci, L.M.: Laser Physics and Laser Instabilities. World Scientific Publishing Company, Singapore (1988)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Professor Albert T. Rosenberger for his experimental acumen and consultation.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Bandy.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, E.K.T., Hall, J.R., Chapman, D.M. et al. Shifts in control parameter dynamically access individual attractors in a multistable system. Nonlinear Dyn 105, 1877–1883 (2021). https://doi.org/10.1007/s11071-021-06667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06667-x

Keywords

Navigation