Skip to main content
Log in

Amplifying the response of a driven resonator via nonlinear interaction with a secondary resonator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamics of a resonantly driven nonlinear resonator (primary) that is nonlinearly coupled to a non-resonantly driven linear resonator (secondary) with a relatively short decay time. Due to its short relaxation time, the secondary resonator adiabatically tracks the primary resonator and modifies its response. Our model, which is motivated by experimental studies on the interaction between nano- and micro-resonators, is relatively simple and can be analyzed analytically and numerically to show that the driven response of the primary resonator can be enhanced significantly due to the interaction with the secondary resonator. Such an arrangement may pave the way for systematic control of driven responses and signal amplification in engineering applications involving nano- and micro-electro-mechanical-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. LaHaye, M., Buu, O., Camarota, B., Schwab, K.: Approaching the quantum limit of a nanomechanical resonator. Science 304(5667), 74 (2004)

    Article  Google Scholar 

  2. Yang, Y.T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583 (2006)

    Article  Google Scholar 

  3. Rugar, D., Budakian, R., Mamin, H., Chui, B.: Single spin detection by magnetic resonance force microscopy. Nature 430(6997), 329 (2004)

    Article  Google Scholar 

  4. Kim, P., Hauer, B., Doolin, C., Souris, F., Davis, J.: Approaching the standard quantum limit of mechanical torque sensing. Nat. Commun. 7(1), 1 (2016)

    Google Scholar 

  5. Cleland, A.N., Roukes, M.L.: A nanometre-scale mechanical electrometer. Nature 392(6672), 160 (1998)

    Article  Google Scholar 

  6. Rhoads, J.F., Miller, N.J., Shaw, S.W., Feeny, B.F.: Mechanical domain parametric amplification. J. Vib. Acous. 130(6), (2008)

  7. Suh, J., LaHaye, M.D., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. Nano Lett. 10(10), 3990 (2010)

    Article  Google Scholar 

  8. Rhoads, J.F., Shaw, S.W.: The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett. 96(23), 234101 (2010)

    Article  Google Scholar 

  9. Karabalin, R., Lifshitz, R., Cross, M., Matheny, M., Masmanidis, S., Roukes, M.: Signal amplification by sensitive control of bifurcation topology. Phys. Rev. Lett. 106(9), 094102 (2011)

    Article  Google Scholar 

  10. Miller, N.J., Shaw, S.W.: Frequency sweeping with concurrent parametric amplification. J. Dyn. Syst. Measure. Control 134(2) (2012)

  11. Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22(3), 035004 (2012)

    Article  Google Scholar 

  12. Ilyas, S., Jaber, N., Younis, M.I.: Static and dynamic amplification using strong mechanical coupling. J. Microelectromech. Syst. 25(5), 916 (2016)

    Article  Google Scholar 

  13. Polunin, P.M., Shaw, S.W.: Self-induced parametric amplification in ring resonating gyroscopes. Int. J. Non-Linear Mechan. 94, 300 (2017)

    Article  Google Scholar 

  14. Ilyas, S., Jaber, N., Younis, M.I.: A coupled resonator for highly tunable and amplified mixer/filter. IEEE Trans. Electron Dev. 64(6), 2659 (2017)

    Article  Google Scholar 

  15. Hasan, M., Alsaleem, F.M., Jaber, N., Hafiz, M.A.A., Younis, M.I.: Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators. Aip Adv. 8(1), 015312 (2018)

    Article  Google Scholar 

  16. Miller, J.M., Bousse, N.E., Shin, D.D., Kwon, H.K. , Kenny, T.W.: Signal enhancement in mem resonant sensors using parametric suppression. In: 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 881–884. IEEE (2019)

  17. Iqbal, S., Malik, A.: A review on MEMS based micro displacement amplification mechanisms. Sens. Actuat. Phys. 300, 111666 (2019)

    Article  Google Scholar 

  18. Zheng, X., Wu, H., Lin, Y., Ma, Z., Jin, Z.: Linear parametric amplification/attenuation for MEMS vibratory gyroscopes based on triangular area-varying capacitors. J. Micromech. Microeng. 30(4), 045010 (2020)

    Article  Google Scholar 

  19. Bothner, D., Yanai, S., Iniguez-Rabago, A., Yuan, M., Blanter, Y.M., Steele, G.A.: Cavity electromechanics with parametric mechanical driving. Nature Commun. 11(1), 1 (2020)

    Article  Google Scholar 

  20. Li, D., Shaw, S.W.: The effects of nonlinear damping on degenerate parametric amplification. Nonlinear Dyn. 102(4), 2433 (2020)

    Article  Google Scholar 

  21. Scofield, J.H.: Frequency-domain description of a lock-in amplifier. Am. J. Phys. 62(2), 129 (1994)

    Article  Google Scholar 

  22. Hsieh, G.C., Hung, J.C.: Phase-locked loop techniques. A survey. IEEE Trans. Indus. Electron. 43(6), 609 (1996)

    Article  Google Scholar 

  23. Mumford, W.: Some notes on the history of parametric transducers. Proc. IRE 48(5), 848 (1960)

    Article  Google Scholar 

  24. Metcalfe, M.: Applications of cavity optomechanics. Appl. Phys. Rev. 1(3), 031105 (2014)

    Article  Google Scholar 

  25. Sabater, A.B., Hunkler, A., Rhoads, J.F.: A single-input, single-output electromagnetically-transduced microresonator array. J. Micromech. Microeng. 24(6), 065005 (2014)

    Article  Google Scholar 

  26. Sabater, A.B., Rhoads, J.F.: Dynamics of globally and dissipatively coupled resonators. J. Vib. Acous. 137(2),(2015)

  27. Ilyas, S., Chappanda, K.N., Al Hafiz, M.A., Ramini, A., Younis, M.I.: An experimental and theoretical investigation of electrostatically coupled cantilever microbeams. Sens. Actuat. A Phys. 247, 368 (2016)

    Article  Google Scholar 

  28. Borra, C., Pyles, C.S., Wetherton, B.A., Quinn, D.D., Rhoads, J.F.: The dynamics of large-scale arrays of coupled resonators. J. Sound Vib. 392, 232 (2017)

    Article  Google Scholar 

  29. Li, L., Han, J., Zhang, Q., Liu, C., Guo, Z.: Nonlinear dynamics and parameter identification of electrostatically coupled resonators. Int. J. Non-linear Mech. 110, 104 (2019)

    Article  Google Scholar 

  30. Giner, J., Uranga, A., Muñóz-Gamarra, J., Marigó, E., Barniol, N.: A fully integrated programmable dual-band RF filter based on electrically and mechanically coupled CMOS-MEMS resonators. J. Micromech. Microeng. 22(5), 055020 (2012)

    Article  Google Scholar 

  31. Ilyas, S., Jaber, N., Younis, M.I.: A MEMS coupled resonator for frequency filtering in air. Mechatronics 56, 261 (2018)

    Article  Google Scholar 

  32. Hajjaj, A., Jaber, N., Ilyas, S., Alfosail, F., Younis, M.I.: Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances. Int. J. Non-Linear Mech. 119, 103328 (2020)

  33. Lugiato, L., Prati, F., Brambilla, M.: The adiabatic elimination principle, pp. 105–111. Cambridge University Press (2015). https://doi.org/10.1017/CBO9781107477254.012

  34. Shoshani, O., Dykman, M.I., Shaw, S.W.: Tuning linear and nonlinear characteristics of a resonator via nonlinear interaction with a secondary resonator. Nonlinear Dyn. 99(1), 433 (2020)

    Article  MATH  Google Scholar 

  35. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons (2008)

  36. Guckenheimer, J., Holmes,P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer Science & Business Media (2013)

  37. Shoshani, O., Shaw, S.W., Dykman, M.I.: Anomalous decay of nanomechanical modes going through nonlinear resonance. Sci. Rep. 7(1), 18091 (2017)

    Article  Google Scholar 

  38. Mahboob, I., Perrissin, N., Nishiguchi, K., Hatanaka, D., Okazaki, Y., Fujiwara, A., Yamaguchi, H.: Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator. Nano Lett. 15(4), 2312 (2015)

    Article  Google Scholar 

  39. Sun, F., Dong, X., Zou, J., Dykman, M.I., Chan, H.B.: Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator. Nat. Communi. 7(1), 1 (2016)

    Google Scholar 

  40. Dong, X., Dykman, M.I., Chan, H.B.: Strong negative nonlinear friction from induced two-phonon processes in vibrational systems. Nat. Commun. 9(1), 1 (2018)

    Article  Google Scholar 

  41. Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Comp. 1, 1 (2008)

    MATH  Google Scholar 

  42. Dou, S., Strachan, B.S., Shaw, S.W., Jensen, J.S.: Structural optimization for nonlinear dynamic response. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 373(2051), 20140408 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The results described herein are based on previous efforts that were carried out over the last couple of years with Prof. Steven W. Shaw and Prof. Mark I. Dykman. The work of the authors is supported by the United States—Israel Binational Science Foundation (BSF) under Grant No. 2018041, and by the Pearlstone Center of Aeronautical Engineering Studies at Ben-Gurion University of the Negev. S.R. acknowledges the financial support of the Kreitman school of advanced graduate studies at Ben-Gurion University of the Negev under the STEM Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Rosenberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, S., Shoshani, O. Amplifying the response of a driven resonator via nonlinear interaction with a secondary resonator. Nonlinear Dyn 105, 1427–1436 (2021). https://doi.org/10.1007/s11071-021-06659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06659-x

Keywords

Navigation