Skip to main content
Log in

Analysis of dynamic pull-in voltage and response time for a micro-electro-mechanical oscillator made of power-law materials

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Analysis of dynamic pull-in voltage for a micro-electro-mechanical oscillator of platform type is performed. The lumped mass model for the actuated micro-cantilever beam made of power-law material is established and the bifurcation is investigated with respect to the dimensionless voltage parameter using simple phase plane analysis. The necessary and sufficient conditions for the existence of periodic solutions to the lumped mass model equation are derived and proved analytically. The pull-in conditions on the strength coefficient, power-law exponent, and voltage are determined. Moreover, the response time is analyzed and approximate periodic solutions are derived. The established analytical results are illustrated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Kostsov, E.G.: Status and prospects of micro- and nanoelectromechanics. Optoelectronics 45, 189–226 (2009). https://doi.org/10.3103/s8756699009030017

    Article  Google Scholar 

  3. Greenberg, Y., Pashkin, Y.A., Ilichev, E.: Nanomechanical resonators. Phys. Usp. 55, 382–407 (2012). https://doi.org/10.3367/UFNe.0182.201204c.040

    Article  Google Scholar 

  4. Ludwik, P.: Elemente der Technologischen Mechanik. Verlag Von Julius, Leipzig (1909)

    Book  Google Scholar 

  5. Wei, D., Liu, Y.: Analytic and finite element solutions of the power-law Euler-Bernoulli beams. Finite Elem. Anal. Des. 52, 31–40 (2012). https://doi.org/10.1016/j.finel.2011.12.007

    Article  MathSciNet  Google Scholar 

  6. Skrzypacz, P., Nurakhmetov, D., Wei, D.: Generalized stiffness and effective mass coefficients for power-law euler-bernoulli beams. Acta Mechanica Sinica 36, 160–175 (2020). https://doi.org/10.1007/s10409-019-00912-8

    Article  MathSciNet  Google Scholar 

  7. Saetiew, W., Chucheepsakul, S.: Post-buckling of linearly tapered column made of nonlinear elastic materials obeying the generalized Ludwick constitutive law. Int. J. Mech. Sci. 65, 83–96 (2012). https://doi.org/10.1016/j.ijmecsci.2012.09.006

    Article  MATH  Google Scholar 

  8. Shackelford, K.K.: Strain hardening behaviour of 316L austenitic stainless steel. Mater. Sci. Technol. 20, 1134–1142 (2004). https://doi.org/10.1179/026708304225022089

    Article  Google Scholar 

  9. Kalpakjian S., Schmid S.R.: Manufacturing Engineering and Technology. seventh ed., Pearson Education South Asia Pte Ltd (2014)

  10. Shackelford J.F.: Introduction to Materials Science for Engineers. seventh ed., fifth ed., Prentice-Hail (2000)

  11. Bin, J., Wanji, C.: A new analytic solution of pure bending beam in couple stress elasto-plasticity: theory and applications. Int. J. Solids Struct. 47, 779–785 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.011

    Article  MATH  Google Scholar 

  12. Wang, W., Huang, Y., Hsia, K.J., Hu, K.X., Chandra, A.: A study of the microbend test by strain gradient plasticity. Int. J. Plasticity. 19(3), 364–382 (2003). https://doi.org/10.1016/s0749-6419(01)00066-3

    Article  MATH  Google Scholar 

  13. Lewis, G., Monasa, F.: Large deflections of cantilever beams of non-linear materials. Comput. Struct. 14, 375–360 (1981)

    Article  Google Scholar 

  14. Lewis, G., Monasa, F.: Large deflections of cantilever beams of non-linear materials of the Ludwick type subjected to an end moment. Int. J. Non-linear Mech. 17, 1–6 (1982). https://doi.org/10.1016/0020-7462(82)90032-4

    Article  MATH  Google Scholar 

  15. Lee, K.: Large deflection of cantilever beams of non-linear elastic material under a combined loading. Int. J. Non-linear Mech. 37, 439–443 (2002). https://doi.org/10.1016/S0020-7462(01)00019-1

    Article  MATH  Google Scholar 

  16. Brojan, M., Videnic, T., Kosel, F.: Large deflections of nonlinearly elastic non-prismatic cantilever beams made from materials obeying the generalized Ludwick constitutive law. Meccanica 44(6), 733–739 (2009). https://doi.org/10.1007/s11012-009-9209-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Brojan, M., Cebron, M., Kosel, F.: Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end. Acta Mech. Sin. 28(3), 863–869 (2012). https://doi.org/10.1007/s10409-012-0053-3

    Article  Google Scholar 

  18. Liu, H., Han, Y., Yang, J.: Large deflection of curved elastic beams made of Ludwick type material. Appl. Math. Mech. 38(7), 909–920 (2017). https://doi.org/10.1007/s10483-017-2213-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, J.K., Lee, B.K.: Elastica of non-prismatic and nonlinear elastic cantilever beams under combined loading. Appl. Sci. (2019). https://doi.org/10.3390/app9050877

    Article  Google Scholar 

  20. Kang, Y.-A., Li, X.-F.: Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force. Int. J. Non-linear Mech. 44, 696–703 (2009). https://doi.org/10.1016/j.ijnonlinmec.2009.02.016

    Article  Google Scholar 

  21. Dutton, T., Edwards, R., Blowey, A.: Tool design for high strength steel side impact beam with springback compensation. Proceedings of 5th European LS-DYNA Users Conference (2005)

  22. Zhang, H., Bellouard, Y., Burdet, E., Clavel, R., Pood, A.-N., Hutmacher, D.W.: Shape memory alloy microgripper for robotic microassembly of thissue engineering scaffolds. Proceeding of the 2004 IEEE International Conference on Robotics and Automation (2004)

  23. Nathanson, H., Newell, W., Wickstrom, R., Davis, J.: The resonant gate transistor. IEEE Trans. Electron Devices 14, 117–133 (1967). https://doi.org/10.1109/t-ed.1967.15912

    Article  Google Scholar 

  24. Zhang, W., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: A review. Sensors Actuators A Phys. 214, 187–218 (2014). https://doi.org/10.1016/j.sna.2014.04.025

    Article  Google Scholar 

  25. Flores, G.: On the dynamic pull-in instability in a mass-spring model of electrostatically actuated MEMS devices. J. Differ. Equ. 262, 3597–3609 (2017). https://doi.org/10.1016/j.jde.2016.11.037

    Article  MathSciNet  MATH  Google Scholar 

  26. Fadeev, S.I., Kostsov, E.G., Pimanov, D.O.: Study of the mathematical model for a microelectromechanical resonator of the Platform type. Computational Techniques (Russian), Computational Technologies, 21, 63–87 (2016)

  27. Kostsov, E.G., Fadeev, S.I.: New microelectromechanical cavities for gigahertz frequencies. Optoelectron. Instrum. Data Process. 49, 204–210 (2013). https://doi.org/10.3103/S8756699013020143

    Article  Google Scholar 

  28. Kostsov, E.G., Fadeev, S.I.: On the functioning of a VHF microelectromechanical resonator. Sib. Zh. Ind. Mat. 16, 75–86 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Mojahedi, M., Moghimi, M., Ahmadian, M.T.: Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. Appl. Math. Model. 34, 1032–1041 (2010). https://doi.org/10.1016/j.apm.2009.07.013

    Article  MathSciNet  MATH  Google Scholar 

  30. Flores, G., Smyth, N.F.: A numerical study of the pull-in instability in some free boundary models for MEMS. Appl. Math. Model. 40, 7962–7970 (2016). https://doi.org/10.1016/j.apm.2016.04.022

    Article  MathSciNet  MATH  Google Scholar 

  31. Azizi, S., Rezazadeh, G., Ghazavi, M.R., Khadem, S.E.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35, 4796–4815 (2011). https://doi.org/10.1016/j.apm.2011.03.049

    Article  MATH  Google Scholar 

  32. Wei, D., Skrzypacz, P.: Nonlinear Waves in Rods and Beams of Power-Law Materials. J. Appl. Math. (2017). https://doi.org/10.1155/2017/2095425

    Article  MathSciNet  MATH  Google Scholar 

  33. Andrews, G.E., Aksey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  34. Cveticanin, L., Zukovic, M., Cveticanin, D.: Exact steady states of periodically forced and essentially nonlinear and damped oscillator. Commun. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/10.1016/j.cnsns.2019.104895

    Article  MathSciNet  MATH  Google Scholar 

  35. Skrzypacz, P., Kadyrov, S., Nurakhmetov, D., Wei, D.: Analysis of dynamic pull-in voltage of a graphene MEMS model. Nonlinear Anal. Real World Appl. 45, 581–589 (2019). https://doi.org/10.1016/j.nonrwa.2018.07.025

    Article  MathSciNet  MATH  Google Scholar 

  36. He, J.-H., Nurakhmetov, D., Skrzypacz, P., Wei, D.: Dynamic pull-in for micro-electro-mechanical device with a current-carrying conductor. J. Low Freq. Noise Vib. Active Control Special Collect. Anal. Methods Nonlinear Vib. (2019). https://doi.org/10.1177/1461348419847298

    Article  Google Scholar 

  37. Shang, H.: Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback. Nonlinear Dyn. 90, 171–183 (2017). https://doi.org/10.1007/s11071-017-3653-4

    Article  MATH  Google Scholar 

  38. Fang, F., Xia, G., Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. (2018). https://doi.org/10.1007/s10409-017-0743-y

    Article  MathSciNet  MATH  Google Scholar 

  39. Kermani, M.M., Dehestani, M.: Anharmonic 1D actuatormodel including electrostatic and Casimir forces with fractional damping perturbed by an external forc. Acta Mech. Sin. (2018). https://doi.org/10.1007/s10409-017-0746-8

    Article  MATH  Google Scholar 

  40. Skrzypacz, P., Bountis, A., Nurakhmetov, D., Kim, J.: Analysis of the lumped mass model for the cantilever beam subject to Grob’s swelling pressure. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2020.105230

  41. Cveticanin, L.: Strong Nonlinear Oscillators. Springer, Analytical solutions. Second Edition (2018)

Download references

Acknowledgements

The research was supported by the Nazarbayev University ORAU grant “Modeling and Simulation of Nonlinear Material Structures for Mechanical Pressure Sensing and Actuation Applications.” Dr. Eduard G. Kostsov, Dr. Alexei A. Sokolov, and Dr. Piotr Skrzypacz are grateful to Dr. Stanislav I. Fadeev for sharing his pearls of wisdom during the course of the research on MEMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Skrzypacz.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrzypacz, P., Wei, D., Nurakhmetov, D. et al. Analysis of dynamic pull-in voltage and response time for a micro-electro-mechanical oscillator made of power-law materials. Nonlinear Dyn 105, 227–240 (2021). https://doi.org/10.1007/s11071-021-06653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06653-3

Keywords

Mathematics Subject Classification

Navigation