Skip to main content

Advertisement

Log in

An extensive FPGA-based realization study about the Izhikevich neurons and their bio-inspired applications

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, a comprehensive comparison about the hardware costs of the original and the modified Izhikevich neuron models and their applications have been presented to the literature. The chaotic behavior, the coupled version, the synchronization applications, and the control of the synchronization states of the original and the modified Izhikevich neurons have been handled and all of these structures have been also emulated with the FPGA-based realizations for the first time. The aim of this article is to show the suitability and the practicality of the Izhikevich neuron model to the electronic realization applications. According to this aim, firstly, the chaotic behaviors of the original and the modified Izhikevich neuron models have been observed with the numerical simulations. Then, the dynamical behaviors of two coupled original and two coupled modified Izhikevich neurons have been examined via the numerical analyses. After that, the synchronization status of two coupled original and two coupled modified Izhikevich neurons have been controlled by the Lyapunov method and these processes have been simulated numerically. Finally, all of these structures have been implemented with the FPGA device, separately. Therefore, it has been overcome the shortcomings in terms of the electronic realization applications of the Izhikevich neuron model. Besides, the device utilizations of the original and the modified Izhikevich neurons in the FPGA-based implementations have been compared inclusively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. McCulloch, W.S., Pits, W.H.: A logical calculus of ideas immanent innervous activity. Bull. Math. Biophys. 5, 115–133 (1943). https://doi.org/10.1007/BF02478259

    Article  MathSciNet  Google Scholar 

  2. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Phisiol. (Lond) 117, 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764

    Article  Google Scholar 

  3. FitzHugh, R.: Mathematical models for excitation and propagation in nerve. In: Schawn, H.P. (ed.) Biological Engineering, vol. 1, pp. 1–85. McGraw-Hill, New York (1969)

    Google Scholar 

  4. Hindmarsh, J.L., Rose, R.M.: A model of neural bursting using three couple first order differential equations. Proc. R. Soc. Lond. Biol. Sci. 221(1222), 87–102 (1984). https://doi.org/10.1098/rspb.1984.0024

    Article  Google Scholar 

  5. Izhikevich, E.M.: Simple model of spiking neurons. IEEETrans. Neural Netw. 14(6), 1569–1572 (2003). https://doi.org/10.1109/tnn.2003.820440

    Article  MathSciNet  Google Scholar 

  6. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J. Q.: Chaotic Dynamical States in Izhikevich Neuron Model. Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology-Algorithms and Software Tools, Elsevier/MK, (2015)

  7. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Analysis of chaotic resonance in Izhikevich neuron model. PLoS ONE 10(9), e0138919 (2015). https://doi.org/10.1371/journal.pone.0138919

    Article  Google Scholar 

  8. Nobukawa, S., Nishimura, H., Yamanishi, T.: Chaotic resonance in typical routes to chaos in the Izhikevich neuron model. Sci. Rep. 7, 1331 (2017). https://doi.org/10.1038/s41598-017-01511-y

    Article  Google Scholar 

  9. Nobukawa, S., Nishimura, H., Yamanishi, T.: Routes to chaos induced by a discontinuous resetting process in a hybrid spiking neuron model. Sci. Rep. 8, 379 (2018). https://doi.org/10.1038/s41598-017-18783-z

    Article  Google Scholar 

  10. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J. Q.: Evaluation of resonance phenomena in chaotic states through typical routes in Izhikevich neuron model. In: Proceedings of 2015 International Symposium on Nonlinear Theory and its Applications, (NOLTA2015), pp. 435–438, (2015).

  11. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Analysis of routes to chaos in Izhikevich neuron model with resetting process. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), pp. 813–818, IEEE, (2014)

  12. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Chaotic states induced by resetting process in Izhikevich neuron model. J. Artif. Intell. Soft Comput. Res. 5(2), 109–119 (2015). https://doi.org/10.1515/jaiscr-2015-0023

    Article  Google Scholar 

  13. Nobukawa, S., Nishimura, H.: Synchronization of chaos in neural systems. Front. Appl. Math. Stat. (2020). https://doi.org/10.3389/fams

    Article  MATH  Google Scholar 

  14. Ghosh, S., Mondal, A., Ji, P., Mishra, A., Dana, S.K., Antonopoulos, C.G., Hens, C.: Emergence of mixed mode oscillations in random networks of diverse excitable neurons: the role of neighbors and electrical coupling. Front. Comput. Neurosci. (2020). https://doi.org/10.3389/fncom.2020.00049

    Article  Google Scholar 

  15. Naiki, K., Shimada, Y., Fujiwara, K., Ikeguchi, T.: Synchronization in a Coupled Izhikevich Neuron Model. In: International Symposium on Nonlinear Theory and Its Applications, (NOLTA2016), Yugawara, Japan, (2016)

  16. Hettiarachchi, I.T., Shanmugam, L., Bhatti, A., Nahavandi, S.: Synchronization criteria for delay coupled Izhikevich neurons. In: Emerging Trends in Neuro Engineering and Neural Computation, pp. 131–144. Springer, Singapore, (2017)

  17. Wang, Q.Y., Lu, Q.S., Chen, G.R., Guo, D.H.: Chaos synchronization of coupled neurons with gap junctions. Phys. Lett. A 356(1), 17–25 (2006). https://doi.org/10.1016/j.physleta.2006.03.017

    Article  MATH  Google Scholar 

  18. Shi, Y., Wang, J., Deng, B., Liu, Q.: Chaotic synchronization of coupled Hindmarsh–Rose neurons using adaptive control. In: International Conference on Biomedical Engineering and Informatics, Tianjin, China, pp. 1–5, (2009). https://doi.org/10.1109/bmei.2009.5302804

  19. Kim, S., Lim, W.: Coupling-induced population synchronization in an excitatory populationof subthreshold Izhikevich neurons. Cogn. Neurodyn. 7, 495–503 (2013)

    Article  Google Scholar 

  20. Kavasseri, R., Nagarajan, R.: Synchronization in electrically coupled neural networks. ComplexSyst. 16, 369–380 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Korkmaz, N., Ozturk, I., Kılıç, R.: Multiple perspectives on the hardware implementations of biological neuron models and programmable design aspects. Turk. J. Elec. Eng. Comput. Sci. 24, 1729–1746 (2016). https://doi.org/10.3906/elk-1309-5

    Article  Google Scholar 

  22. Dahasert, N., Öztürk, İ, Kiliç, R.: Experimental realizations of the HR neuron model with programmable hardware and synchronization applications. Nonlinear Dyn. 70(4), 2343–2358 (2012). https://doi.org/10.1007/s11071-012-0618-5

    Article  MathSciNet  Google Scholar 

  23. Korkmaz, N., Öztürk, İ, Kılıç, R.: The investigation of chemical coupling in a HR neuron model with reconfigurable implementations. Nonlinear Dyn. 86(3), 1841–1854 (2016). https://doi.org/10.1007/s11071-016-2996-6

    Article  Google Scholar 

  24. Şekerli, M., Butera, R.J.: An implementation of a simple neuron model in field programmable analog arrays. In: 26th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, IEMBS’04, pp. 4564–4567 (2004)

  25. Dahasert, N., Öztürk, İ., Kiliç, R.: Implementation of Izhikevich neuron model with field programmable devices. In: 20th Signal Processing and Communications Applications Conference (SIU), Mugla, Turkey, 2012, pp. 1–4 (2012). https://doi.org/10.1109/SIU.2012.6204544.

  26. Rice, K. L., Bhuiyan, M. A., Taha, T. M., Vutsinas, C. N., Smith, M. C.: FPGA implementation of Izhikevich spiking neural networks for character recognition. In: IEEE International Conference on Reconfigurable Computing and FPGAs, pp. 451–456 (2009)

  27. Soleimani, H., Ahmadi, A., Bavandpour, M.: Biologically inspired spiking neurons: piecewise linear models and digital implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2991–3004 (2012). https://doi.org/10.1109/TCSI.2012.2206463

    Article  MathSciNet  MATH  Google Scholar 

  28. Korkmaz, N., Öztürk, İ, Kalinli, A., Kiliç, R.: A comparative study on determining nonlinear function parameters of the Izhikevich neuron model. J. Circuit Syst. Comput. 27(10), 1850164 (2018). https://doi.org/10.1142/s0218126618501645

    Article  Google Scholar 

  29. Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014). https://doi.org/10.1038/nrn3708

    Article  Google Scholar 

  30. Çimen, Z., Korkmaz, N., Altuncu, Y., Kılıç, R.: Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons. Biosystems 198, 104284 (2020)

    Article  Google Scholar 

  31. Nguyen, L.H., Hong, K.S.: Synchronization of coupledchaotic FitzHugh–Nagumo neurons via Lyapunov functions. Math. Comput. Simul. 82, 590–603 (2011). https://doi.org/10.1016/j.matcom.2011.10.005

    Article  MATH  Google Scholar 

  32. Rehan, M., Hong, K.S., Aqil, M.: Synchronization of multiple chaotic FitzHugh–Nagumo neurons with gap junctions under external electrical stimulation. Neurocomputing 74, 3296–3304 (2011). https://doi.org/10.1016/j.neucom.2011.05.015

    Article  Google Scholar 

  33. Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017). https://doi.org/10.1007/s11071-016-3160-z

    Article  Google Scholar 

  34. Hettiarachchi, I.T., Lakshmanan, S., Bhatti, A., Lim, C.P., Prakash, M., Balasubramaniam, P., Nahavandi, S.: Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dyn. 86(2), 1249–1262 (2016). https://doi.org/10.1007/s11071-016-2961-4

    Article  MATH  Google Scholar 

  35. Chen, Q., Wang, J., Yang, S., Qin, Y., Deng, B., Wei, X.: A real-timeFPGA implementation of a biologically inspired central pattern generatornetwork. Neurocomputing 244, 63–80 (2017). https://doi.org/10.1016/j.neucom.2017.03.028

    Article  Google Scholar 

  36. Nazari, S., Amiri, M., Faez, K., Amiri, M.: Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164, 281–292 (2015). https://doi.org/10.1016/j.neucom.2015.02.041

    Article  Google Scholar 

  37. Xue, F., Wang, W., Li, N., Yang, Y.: FPGA implementation of self-organized spiking neural network controller for mobile robots. Adv. Mech. Eng. 6, 180620 (2014). https://doi.org/10.1155/2014/180620

    Article  Google Scholar 

  38. Kim, Y.: Identification of dynamical states in stimulated Izhikevich neuron models by using a 0–1 test. J. Korean Phys. Soc. 57(6), 1363–1368 (2010). https://doi.org/10.3938/jkps.57.1363

    Article  Google Scholar 

  39. Bizzarri, F., Brambilla, A., Gajani, G.S.: Lyapunov exponents computation for hybrid neurons. J. Comput. Neurosci. 35(2), 201–212 (2013). https://doi.org/10.1007/s10827-013-0448-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Lynch, S.: Dynamical Systems with Applications Using MATLAB. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  41. Springer, S., Haario, H., Shemyakin, V., Kalachev, L., Shchepakin, D.: Robust parameter estimation of chaotic systems. Inverse Probl. Imaging 13(6), 1189 (2019). https://doi.org/10.3934/ipi.2019053

    Article  MathSciNet  MATH  Google Scholar 

  42. Turgut, O., Turgut, M., Çoban, M.: Artificial Cooperative Search algorithm for parameter identification of chaotic systems. Bitlis Eren Univ. J. Sci. Technol. 5(1), 11–17 (2015). https://doi.org/10.17678/beujst.63201

    Article  Google Scholar 

  43. Silva-Juárez, A., Tlelo-Cuautle, E., de la Fraga, L.G., Li, R.: Optimization of the Kaplan–Yorke dimension in fractional-order chaotic oscillators by metaheuristics. Appl. Math. Comput. 394, 125831 (2021). https://doi.org/10.1016/j.amc.2020.125831

    Article  MathSciNet  MATH  Google Scholar 

  44. Silva-Juarez, A., Rodriguez-Gomez, G., de la Fraga, L.G., Guillen-Fernandez, O., Tlelo-Cuautle, E.: Optimizing the Kaplan–Yorke dimension of chaotic oscillators applying DE and PSO. Technologies 7(2), 38 (2019). https://doi.org/10.3390/technologies7020038

    Article  Google Scholar 

  45. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  46. Pano-Azucena, A.D., Tlelo-Cuautle, E., Ovilla-Martinez, B., De la Fraga, L.G., Li, R.: Pipeline FPGA-based Implementations of ANNs for the prediction of up to 600-steps-ahead of chaotic time series. J. Circuit Syst. Comput. (2020). https://doi.org/10.1142/S0218126621501644

    Article  Google Scholar 

  47. Guillén-Fernández, O., Moreno-López, M.F., Tlelo-Cuautle, E.: Issues on applying one-and multi-step numerical methods to chaotic oscillators for FPGA implementation. Mathematics 9(2), 151 (2021). https://doi.org/10.3390/math9020151

    Article  Google Scholar 

  48. Freeman, R., Kokotovic, P.V.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Springer (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimet Korkmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, Z., Korkmaz, N., Altuncu, Y. et al. An extensive FPGA-based realization study about the Izhikevich neurons and their bio-inspired applications. Nonlinear Dyn 105, 3529–3549 (2021). https://doi.org/10.1007/s11071-021-06647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06647-1

Keywords

Navigation