Skip to main content

Synchronization of chaotic artificial neurons and its application to secure image transmission under MQTT for IoT protocol

Abstract

Artificial neurons are quite useful to generate chaotic behavior, and they can be implemented on embedded systems like Raspberry Pi that include WiFi network connectivity. In this manner, this paper shows the use of some artificial neurons to generate chaotic binary sequences whose randomness is enhanced by post-processing approaches and measured by performing statistical NIST SP 800-22 tests. The chaotic neurons are synchronized by different methods and each neuron is implemented on a Raspberry Pi, which allows connectivity to a machine-to-machine (M2M) broker. This wireless connectivity advantage is exploited herein to develop a lightweight cryptographic application under the message queueing telemetry transport (MQTT) for Internet of Things (IoT) protocol. The synchronized neurons have a topology in which one Raspberry Pi works as publisher and can send encrypted information to multiple subscribers. Due to the chaotic behavior of the neurons, the Raspberry Pi acting as subscriber can recover the encrypted information if and only if it has the right key, i.e., the correct random binary sequence generated by the publisher. To augment the security against attacks, the chaotic neurons have different initial conditions before M2M synchronization is accomplished, and the color image encryption under MQTT for IoT is evaluated by performing correlation, histogram, variance, entropy, and NPCR tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Notes

  1. 1.

    https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software.

References

  1. 1.

    Strous, L., von Solms, S., Zúquete, A.: Security and privacy of the internet of things. Comput. Secur. 102, 102148 (2021)

    Google Scholar 

  2. 2.

    Kavyashree, E.D., Vidyashree, H.D., Anil Kumar, B.H.: A survey of internet of things (iot)-applications merits demerits and challenges. IJIRCCE 6, 2 (2018)

    Google Scholar 

  3. 3.

    Tariq, U., Aseeri, A.O., Alkatheiri, M.S., Zhuang, Yu.: Context-aware autonomous security assertion for industrial iot. IEEE Access 8, 191785–191794 (2020)

    Google Scholar 

  4. 4.

    Kumar, R., Tripathi, R.: Towards design and implementation of security and privacy framework for internet of medical things (iomt) by leveraging blockchain and ipfs technology. J. Supercomput. 1–40 (2021)

  5. 5.

    Alshammari, B.M., Guesmi, R., Guesmi, T., Alsaif, H., Alzamil, A.: Implementing a symmetric lightweight cryptosystem in highly constrained iot devices by using a chaotic s-box. Symmetry 13(1) (2021)

  6. 6.

    Wang, T., Wang, D., Kaijun, W.: Chaotic adaptive synchronization control and application in chaotic secure communication for industrial internet of things. IEEE Access 6, 8584–8590 (2018)

    Google Scholar 

  7. 7.

    Roohi, M., Zhang, C., Chen, Y.: Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography. Nonlinear Dyn. 100(4), 3979–4001 (2020)

    Google Scholar 

  8. 8.

    Zhao, C.-F., Ren, H.-P.: Image encryption based on hyper-chaotic multi-attractors. Nonlinear Dyn. 100(1), 679–698 (2020)

    Google Scholar 

  9. 9.

    Hai, Q., Liu, S.: Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete Contin. Dyn. Syst. Ser. B 26(6), 3097 (2021)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Bashkirtseva, I., Ryashko, L., Pisarchik, A.N.: Stochastic transitions between in-phase and anti-phase synchronization in coupled map-based neural oscillators. Commun. Nonlinear Sci. Numer. Simul. 95, 105611 (2021)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Shiue-Der, L., Sian, H-W., Wang, M-H., Kuo, C-C.: Fault diagnosis of power capacitors using a convolutional neural network combined with the chaotic synchronisation method and the empirical mode decomposition method. IET Sci. Meas. Technol. (2021)

  12. 12.

    Ailong, Wu., Chen, Yue, Zeng, Zhigang: Quantization synchronization of chaotic neural networks with time delay under event-triggered strategy. COGNITIVE NEURODYNAMICS (2021)

  13. 13.

    Dai, J., Cao, Y., Xiao, L., Tan, H., Jia, L.: Design and analysis of a noise-suppression zeroing neural network approach for robust synchronization of chaotic systems. Neurocomputing 426, 299–308 (2021)

    Google Scholar 

  14. 14.

    Hai, Q.: Sampled-data synchronization control for chaotic neural networks with mixed delays: a discontinuous lyapunov functional approach. IEEE Access 9, 25383–25393 (2021)

    Google Scholar 

  15. 15.

    Akhmet, M., Cincin, D.A., Tleubergenova, M., Nugayeva, Z.: Unpredictable oscillations for hopfield-type neural networks with delayed and advanced arguments. Mathematics 9(5), 571 (2021)

    Google Scholar 

  16. 16.

    Pan, C., Hong, Q., Wang, X.: A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory. IEEE Trans. Comput Aided Des. Integr. Circuits Syst. 40(3), 521–532 (2021)

    Google Scholar 

  17. 17.

    Wang, Y., Yang, F.: A fractional-order CNN hyperchaotic system for image encryption algorithm. Physica Scr. 96(3), 035209 (2021)

    Google Scholar 

  18. 18.

    Wang, J., Shenquan, L., Wang, H., Zeng, H.: China Dynamical properties of firing patterns in the Huber-Braun cold receptor model in response to external current stimuli. Neural Netw. World 25, 641–655 (2015)

    Google Scholar 

  19. 19.

    Tolba, M.F., Elsafty, A.H., Armanyos, M., Said, L.A., Madian, A.H., Radwan, A.G.: Synchronization and FPGA realization of fractional-order Izhikevich neuron model. Microelectron. J. 89, 56–69 (2019)

    Google Scholar 

  20. 20.

    Mishra, D., Yadav, A., Kalra, P.K.: Chaotic behavior in neural networks and FitzHugh–Nagumo Neuronal Model. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) Neural Information Processing. Lecture Notes in Computer Science, pp. 868–873. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  21. 21.

    Chapra, S.C., Canale, R. P.: Numerical methods for engineers, 5ta edició. McGraw-Hill/Interamericana (2006)

  22. 22.

    Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos Interdiscip. J. Nonlinear Sci. 9(2), 413–435 (1999)

    MATH  Google Scholar 

  23. 23.

    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Wang, B., Zhang, X., Dong, X.: Novel secure communication based on chaos synchronization. IEICE Trans. Fundam. Electr. Commun. Comput. Sci E101–A(7), 1132–1135 (2018). Publisher: The Institute of Electronics, Information and Communication Engineers

  25. 25.

    Liao, T.-L., Lin, H.-R., Wan, P.-Y., Yan, J.-J.: Improved attribute-based encryption using chaos synchronization and its application to MQTT security. Appl. Sci. 9, 4454 (2019)

    Google Scholar 

  26. 26.

    De Rango, F., Potrino, G., Tropea, M., Fazio, P.: Energy-aware dynamic internet of things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervas. Mobile Comput. 61, 101105 (2020)

    Google Scholar 

  27. 27.

    Oliveira, D., Costa, M., Pinto, S., Gomes, T.: The future of low-end motes in the internet of things: a prospective paper. Electronics 9(1), 111 (2020)

    Google Scholar 

  28. 28.

    Sira-Ramírez, H., Cruz-Hernández, C.: Synchronization of chaotic systems: a generalized hamiltonian systems approach. Int. J. Bifurc. Chaos 11(05), 1381–1395 (2001)

    MATH  Google Scholar 

  29. 29.

    Atlee Jackson, E., Grosu, I.: An open-plus-closed-loop (OPCL) control of complex dynamic systems. Physica D 85(1), 1–9 (1995)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Zhang, W., Zhu, Z., Hai, Yu.: A symmetric image encryption algorithm based on a coupled logistic-Bernoulli map and cellular automata diffusion strategy. Entropy 21(5), 504 (2019)

    MathSciNet  Google Scholar 

  31. 31.

    Qing, L., Zhu, C., Deng, X.: An efficient image encryption scheme based on the LSS chaotic map and single S-Box. IEEE Access 8, 25664–25678 (2020)

    Google Scholar 

  32. 32.

    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Moafimadani, S.S., Chen, Y., Tang, C.: A new algorithm for medical color images encryption using chaotic systems. Entropy 21(6), 577 (2019)

    MathSciNet  Google Scholar 

  34. 34.

    Tsaneva-Atanasova, K., Osinga, H.M., Rieß, T., Sherman, A.: Full system bifurcation analysis of endocrine bursting models. J. Theor. Biol. 264(4), 1133–1146 (2010)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Braun, H.A., Huber, M.T., Dewald, M., Schäfer, K., Voigt, K.: Computer simulations of neuronal signal transduction: the role of nonlinear dynamics and noise. Int. J. Bifurc. Chaos 08(05), 881–889 (1998)

    MATH  Google Scholar 

  36. 36.

    Braun, H.A., Huber, M.T., Anthes, N., Voigt, K., Neiman, A., Pei, X., Moss, F.: Interactions between slow and fast conductances in the Huber/Braun model of cold-receptor discharges. Neurocomputing 32–33, 51–59 (2000)

    Google Scholar 

  37. 37.

    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    MathSciNet  Google Scholar 

  38. 38.

    Das, A., Roy, A.B., Das, P.: Chaos in a three dimensional neural network. Appl. Math. Model. 24(7), 511–522 (2000)

    MATH  Google Scholar 

  39. 39.

    de la Fraga, L.G., Torres-Pérez, E., Tlelo-Cuautle, E., Mancillas-López, C.: Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017)

    Google Scholar 

  40. 40.

    Agarwal, S.: Secure image transmission using fractal and 2D-Chaotic map. J. Imaging 4(1), UNSP 17 (2018). WOS:000424412600017

    MathSciNet  Google Scholar 

  41. 41.

    Stoyanov, B., Kordov, K.: Image encryption using Chebyshev map and rotation equation. Entropy 17(4), 2117–2139 (2015). WOS:000354125700029

    MathSciNet  Google Scholar 

  42. 42.

    Flores-Vergara, A., Garcia-Guerrero, E.E., Inzunza-Gonzalez, E., Lopez-Bonilla, O.R., Rodriguez-Orozco, E., Cardenas-Valdez, J.R., Tlelo-Cuautle, E.: Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn. 96(1), 497–516 (2019). WOS:000465632600034

    MATH  Google Scholar 

  43. 43.

    Pareschi, F., Rovatti, R., Setti, G.: Simple and effective post-processing stage for random stream generated by a Chaos-based RNG. In: International Symposium on Nonlinear Theory and its Applications (NOLTA 2006), pp. 383–386 (2006)

  44. 44.

    Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, N., Dray, J.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report NIST Special Publication (SP) 800-22 Rev. 1a, National Institute of Standards and Technology (2010)

  45. 45.

    Guillén-Fernández, O., Meléndez-Cano, A., Tlelo-Cuautle, E., Núũez-Pérez, J.C., de Jesus Rangel-Magdaleno, J.: On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission. PLoS ONE 14(2), e0209618 (2019)

    Google Scholar 

  46. 46.

    Willmott, C.J., Matsuura, K.: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int. J. Geogr. Inf. Sci. 20(1), 89–102 (2006). https://doi.org/10.1080/13658810500286976

    Article  Google Scholar 

  47. 47.

    Pontius, R.G., Thontteh, O., Chen, H.: Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 15(2), 111–142 (2008)

    MathSciNet  Google Scholar 

  48. 48.

    Kim, G., Kang, S., Park, J., Chung, K.: An MQTT-based context-aware autonomous system in oneM2M architecture. IEEE Internet Things J. 6(5), 8519–8528 (2019)

    Google Scholar 

  49. 49.

    Peng, J., Zhang, D., Liao, X.: A digital image encryption algorithm based on hyper-chaotic cellular neural network. Fundamenta Informaticae 90(3), 269–282 (2009)

    MathSciNet  Google Scholar 

  50. 50.

    Yue, W., Noonan, J.P., Agaian, S., et al.: Npcr and uaci randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT) 1(2), 31–38 (2011)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esteban Tlelo-Cuautle.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Zapata, A.M., Tlelo-Cuautle, E., Cruz-Vega, I. et al. Synchronization of chaotic artificial neurons and its application to secure image transmission under MQTT for IoT protocol. Nonlinear Dyn 104, 4581–4600 (2021). https://doi.org/10.1007/s11071-021-06532-x

Download citation

Keywords

  • Chaos
  • Artificial neuron
  • Synchronization
  • MQTT for IoT
  • Raspberry Pi
  • Random binary sequence