Skip to main content
Log in

Lagrangian and Hamiltonian formalisms for coupled higher-order elements: theory, modeling, simulation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the definition of the constitutive relation of a classical higher-order two-terminal element from Chua’s table is extended to the coupled element. The way and the conditions of introducing the corresponding potential function are shown. The forms of the Lagrangian and Hamiltonian of circuits containing coupled elements are derived. The modeling techniques using coupled elements are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mann, S., Janzen, R., Post, M.: Hydraulophone design considerations: absement, displacement, and velocity-sensitive music keyboard in which each key is a water jet. Proc. ACM Int. Conf. Multimed. (2006). https://doi.org/10.1145/1180639.1180751

    Article  Google Scholar 

  2. Mann, S., Pierce, C., Zheng, B.C., Hernandez, J., Scavuzzo, C., Mann, C.: Integral kinesiology feedback for weight and resistance training. Proc. Int. Conf. Small Image Technol. Internet-Based Syst. 10, 115 (2019). https://doi.org/10.1109/SITIS.2019.00059

    Article  Google Scholar 

  3. Paynter, H.A.: Analysis and Design of Engineering Systems: Class Notes for M.I.T. Course 2.751/. The M.I.T. Press, Cambridge, 303 pp (1961), ISBN: 9780262160049

  4. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  5. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  6. Machado Tenreiro, J.A., Lopes António, M.: Multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res. 25, 147–157 (2020). https://doi.org/10.1016/j.jare.2020.01.004

    Article  Google Scholar 

  7. Oster, G.F., Auslander, D.M.: The memristor: a new Bond graph element. J. Dyn. Syst. Meas. Control 94, 249–252 (1972). https://doi.org/10.1115/TCT.1.3426595

    Article  Google Scholar 

  8. Bruton, L.T.: Frequency selectivity using positive impedance converter-type networks. Proc. IEEE 56(8), 1378–1379 (1968). https://doi.org/10.1109/PROC.1968.6599

    Article  Google Scholar 

  9. Antoniou, A.: Bandpass transformation and realization using frequency-dependent negative-resistance elements. IEEE Trans. Circuit Theory 18(2), 297–299 (1971). https://doi.org/10.1109/TCT.1971.1083241

    Article  Google Scholar 

  10. Biolek, Z., Biolek, D., Biolková, V., Kolka, Z.: Higher-Order Hamiltonian for Circuits with (α, β) Elements. Entropy 22(4), 412 (2020). https://doi.org/10.3390/e22040412

    Article  MathSciNet  MATH  Google Scholar 

  11. Pais, A., Uhlenbeck, G.E.: On field theories with non-localized action. Phys. Rev. 79, 145–165 (1950). https://doi.org/10.1103/PhysRev.79.145

    Article  MathSciNet  MATH  Google Scholar 

  12. Chua, L.O.: Device modeling via nonlinear circuit elements. IEEE Trans. Circuits Syst. 27(11), 1014–1044 (1980). https://doi.org/10.1109/TCS.1980.1084742

    Article  MathSciNet  MATH  Google Scholar 

  13. Chua, L.O.: Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91(11), 1830–1859 (2003). https://doi.org/10.1109/JPROC.2003.818319

    Article  Google Scholar 

  14. Biolek, D., Biolek, Z.: Predictive models of nanodevices. IEEE Trans. Nanotechnol. 17(5), 906–913 (2018). https://doi.org/10.1109/TNANO.2018.2812359

    Article  MATH  Google Scholar 

  15. Duinker, S.: Search for a complete set of basic elements for the synthesis of non-linear electrical systems. In: Recent Developments in Network Theory. Oxford: Pergamon, 221–250 (1963)

  16. Chua, L.O., Lam, Y.-F.: A theory of algebraic n-ports. IEEE Trans. Circuit Theory 20(4), 370–382 (1973). https://doi.org/10.1109/TCT.1973.1083715

    Article  MathSciNet  Google Scholar 

  17. Tellegen, B.D.H.: The gyrator—a new electric network element. Philips Res. Rep. 3, 81–101 (1948)

    MathSciNet  Google Scholar 

  18. Duinker, S.: Traditors, a new class of non-energic nonlinear network elements. Philips Res. Rep. 14, 29–51 (1959)

    MathSciNet  Google Scholar 

  19. Duinker, S.: Conjunctors, another new class of non-energic nonlinear network elements. Philips Res. Rep. 17, 1–19 (1962)

    Google Scholar 

  20. Chua, L.O., Szeto, E.W.: High-order non-linear circuit elements: circuit-theoretic properties. Int. J. Circuit Theory Appl. 11(2), 187–206 (1983). https://doi.org/10.1002/cta.4490110206

    Article  MATH  Google Scholar 

  21. Biolek, D., Biolek, Z., Biolková, V.: Every nonlinear element from Chua’s table can generate pinched hysteresis loops: generalised homothety theorem. Electron. Lett. 52(26), 1744–1746 (2016). https://doi.org/10.1049/el.2016.2961

    Article  Google Scholar 

  22. Penfield, P., Spence, R., Duinker, S.: Tellegen's Theorem and Electrical Networks. Research Monograph, 58, The M.I.T. Press, Cambridge, 143 pp (1970), ISBN: 9780262160322

  23. Biolek, D., Biolek, Z., Biolková, V.: Lagrangian for circuits with higher-order elements. Entropy 21, 1059 (2019). https://doi.org/10.3390/e21111059

    Article  MathSciNet  MATH  Google Scholar 

  24. Biolek, Z., Biolek, D., Biolková, V., Kolka, Z.: Taxicab geometry in table of higher-order elements. Nonlinear Dyn. 98, 623–636 (2019). https://doi.org/10.1007/s11071-019-05218-9

    Article  MATH  Google Scholar 

  25. Knetter, C.G.: Effective Lagrangians with higher derivatives and equations of motion. Phys. Rev. D 49, 6709 (1994). https://doi.org/10.1103/PhysRevD.496709

    Article  Google Scholar 

  26. Moore, C.: Braids in Classical Dynamics. Phys. Rev. Lett. 70(29), 3675–3679 (1993). https://doi.org/10.1103/PhysRevLett.70.3675

    Article  MathSciNet  MATH  Google Scholar 

  27. Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152, 881–901 (2000). https://doi.org/10.2307/2661357

    Article  MathSciNet  MATH  Google Scholar 

  28. Itoh, M., Chua, L.O.: Memristor Hamiltonian circuits. Int. J. Bifurc. Chaos 21(9), 2395–24255 (2011). https://doi.org/10.1142/S021812741103012X

    Article  MATH  Google Scholar 

Download references

Funding

This work has been supported by the Czech Science Foundation under grant no. 20-26849S. For research, the infrastructure of K206 and K217 UD Brno was also used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Biolek.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biolek, Z., Biolek, D., Biolková, V. et al. Lagrangian and Hamiltonian formalisms for coupled higher-order elements: theory, modeling, simulation. Nonlinear Dyn 104, 3547–3560 (2021). https://doi.org/10.1007/s11071-021-06525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06525-w

Keywords

Navigation