Skip to main content
Log in

On the stability of periodic motions of a two-body system with flexible connection in an elliptical orbit

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with periodic motions and their stability of a flexible connected two-body system with respect to its center of mass in a central Newtonian gravitational field on an elliptical orbit. Equations of motion are derived in a Hamiltonian form, and two periodic solutions as well as the necessary conditions for their existence are acquired. By analyzing linearized equations of perturbed motions, Lyapunov instability domains and domains of stability in the first approximation are obtained. In addition, the third- and fourth-order resonances are investigated in linear stability domains. A constructive algorithm based on a symplectic map is used to calculate the coefficients of the normalized Hamiltonian. Then, a nonlinear stability analysis for two periodic solutions is performed in the third- and fourth-order resonance cases as well as in the nonresonance case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Celletti, A., Perozzi, E.: Celestial Mechanics: The Waltz of the Planets. Springer, New York (2007)

    Google Scholar 

  3. Colombo, G.: Rotational period of the planet mercury. Nature 208, 575–578 (1965)

    Google Scholar 

  4. Goldreich, P., Sciama, D.W.: An explanation of the frequent occurrence of commensurable mean motions in the solar system. Mon. Not. R. Astron. Soc. 130, 159–181 (1965)

    Google Scholar 

  5. Rambaux, N., Bois, E.: Theory of the mercury’s spin-orbit motion and analysis of its main librations. Astron. Astrophys. 413, 381–393 (2004)

    Google Scholar 

  6. D’Hoedt, S., Lemaitre, A.: The spin-orbit resonance of mercury: a hamiltonian approach. Proc. Int. Astron. Union 196, 263–270 (2004)

    MATH  Google Scholar 

  7. Beletskii, V.V.: On Satellite Libration. In: Beletskii, V.V. (ed.) Artificial Earth Satellites, pp. 13–31. Akad. Nauk SSSR, Moscow (1959)

    Google Scholar 

  8. Beletskii, V.V.: The Satellite Motion About Center of Mass. Publishing House Science, Moscow (1965)

    MATH  Google Scholar 

  9. Beletskii, V.V., Lavrovskii, E.K.: On the theory of the resonance rotation of Mercury. Soviet Astron. 52, 1299–1308 (1975)

    MATH  Google Scholar 

  10. Petryshyn, W.V., Yu, Zs.: On the solvability of an equation describing the periodic motions of a satellite in its elliptic orbit. Nonlinear Anal. Theory Methods Appl. 9, 969–975 (1985)

  11. Bruno, A.D.: Families of periodic solutions to the Beletsky equation. Cosmic Res. 40, 274–295 (2002)

    Google Scholar 

  12. Chu, J.F., Liang, Z.T., Torres, P.J., Zhou, Z.: Existence and stability of periodic oscillations of a rigid dumbbell satellite around its center of mass. Discrete Contin. Dyn. Syst. Ser. B 22, 2669–2685 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Khentov, A.A.: On the stability in the first approximation of the earth artificial satellite rotation about the center of mass. Kosmich. Issled. 6, 793–795 (1968)

    Google Scholar 

  14. Markeev, A.P.: Stability of equilibrium states of Hamiltonian systems: a method of investigation. Mech. Sol. 39, 1–8 (2004)

    Google Scholar 

  15. Churkina, T.E.: The stability of periodic linear oscillations of a satellite about the direction of the major axis of an elliptic orbit. J. Appl. Math. Mech. 79, 426–431 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Churkina, T.E.: Stability of a planar resonance satellite motion under spatial perturbations. Mech. Sol. 42, 507–516 (2007)

    Google Scholar 

  17. Churkina, T.E.: Satellite rotation stability at a Mercurian type resonance. Mech. Sol. 49, 127–135 (2014)

    Google Scholar 

  18. Churkina, T.E., Stepanov, S.Y.: On the stability of periodic mercury-type rotations. Regul. Chaotic Dyn. 22, 851–864 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Khentov, A.A.: On rotational motion of a satellite. Kosmicheskiye Issled. 22, 130–131 (1984)

    Google Scholar 

  20. Markeev, A.P., Bardin, B.S.: A planar rotational motion of a satellite in an elliptic orbit. Cosmic Res. 32, 583–589 (1994)

    Google Scholar 

  21. Markeev, A.P.: To the problem of plane periodic rotations of a satellite in an elliptic orbit. Mech. Sol. 43, 400–411 (2008)

    Google Scholar 

  22. Bardin, B.S., Chekina, E.A., Chekin, A.M.: On the stability of a planar resonant rotation of a satellite in an elliptic orbit. Regul. Chaotic Dyn. 20, 63–73 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Bardin, B.S., Chekina, E.A.: On the stability of resonant rotation of a symmetric satellite in an elliptical orbit. Regul. Chaotic Dyn. 21, 377–389 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Bardin, B.S., Chekina, E.A.: On the constructive algorithm for stability analysis of an equilibrium point of a periodic hamiltonian system with two degrees of freedom in the second-order resonance case. Regul. Chaotic Dyn. 22, 808–823 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Liang, Z.T., Liao, F.F.: Periodic solutions for a dumbbell satellite equation. Nonlinear Dyn. 95, 2469–2476 (2019)

    MATH  Google Scholar 

  26. Celletti, A., Sidorenko, V.: Some properties of the dumbbell satellite attitude dynamics. Celest Mech. Dyn. Astron. 101, 105–126 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Koh, D., Flashner, H.: Global analysis of gravity gradient satellite’s pitch motion in an elliptic orbit. J. Comput. Nonlinear Dyn. (2015). https://doi.org/10.1115/1.4029621

    Article  Google Scholar 

  28. Amel’kin, N.I.: The equilibrium positions of a satellite carrying a three-degree-of-freedom powered gyroscope in a central gravitational field. J. Appl. Math. Mech. 77, 181–189 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Amelkin, N.I., Kholoshchak, V.V.: Stability of the steady rotations of a satellite with internal damping in a central gravitational field. J. Appl. Math. Mech. 81, 85–94 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Amelkin, N.I., Kholoshchak, V.V.: Steady rotations of a satellite with internal elastic and dissipative forces. J. Appl. Math. Mech. 81, 431–441 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Yue, B.Z., Ahmad, S., Song, X.J.: Casimir method for attitude stability analysis of liquid-filled spacecraft. Sci. Sin. Phys. Mech. Astron. 43, 401–406 (2013)

    Google Scholar 

  32. Yan, Y.L., Yue, B.Z.: Analytical method for the attitude stability of partically liquid filled spacecraft with flexible appendage. Acta Mech. Sin. 33, 208–218 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Robe, T.R., Kane, T.R.: Dynamics of an elastic satellite-I. Int. J. Solids Struct. 3, 333–352 (1967)

    MATH  Google Scholar 

  34. Wittenburg, J.: Permanente Drehungen zweier durch ein Kugelgelenk gekoppelter, starrer Körper. Acta Mech. 19, 215–226 (1974)

    MATH  Google Scholar 

  35. Rimrott, F.P.J., Janabi-Sharifi, F.: A torque-free flexible model gyro. J. Appl. Mech. Mar. 59, 7–15 (1992)

    Google Scholar 

  36. Liu, Y.Z.: The stability of the permanent rotation of a free multibody system. Acta Mech. 79, 43–51 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Liu, Y.Z., Rimrott, F.P.J.: On the permanent rotation of a torque-free two-body system with a flexible connection. J. Appl. Mech. Mar. 61, 199–202 (1994)

    MATH  Google Scholar 

  38. Chernous’ko, F.L.: On the motion of a satellite about its center of mass under the action of gravitational moments. J. Appl. Math. Mech. 27, 708–722 (1963)

    MathSciNet  MATH  Google Scholar 

  39. Beletsky, V.V.: Spacecraft Attitude Motion in Gravity Field Moscow State Univ., Moscow (1975)

  40. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55, 531–773 (1992)

    MathSciNet  Google Scholar 

  41. Markeyev, A.P.: A constructive algorithm for the normalization of a periodic hamiltonian. J. Appl. Math. Mech. 69, 323–337 (2005)

    MathSciNet  Google Scholar 

  42. Markeev, A.P.: Libration Points in Celestial Mechanics and Space Dynamics. Nauka, Moscow (1978)

    MATH  Google Scholar 

  43. Meyer, K., Hall, G.R.: Introduction to Hamiltonian Dynamical System and the N-Body Problem. Springer, Cham (2017)

    Google Scholar 

  44. Gustavson, F.G.: On constructing formal integrals of a Hamiltonian system near an equilibrium point. Astron. J. 71, 670–686 (1966)

    Google Scholar 

  45. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Google Scholar 

  46. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Berlin (1971)

    MATH  Google Scholar 

  47. Moser, J.: New aspects in the theory of stability of Hamiltonian systems. Commun. Pure Appl. Math. 11, 81–114 (1958)

    MathSciNet  MATH  Google Scholar 

  48. Glimm, J.: Formal stability of hamiltonian systems. Commun. Pure Appl. Math. 17, 509–526 (1963)

    MathSciNet  MATH  Google Scholar 

  49. Vidal, C.: Stability of equilibrium positions of hamiltonian systems. Qual. Th. Dyn. Syst. 7, 253–294 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Zhao, J., Yu, K. et al. On the stability of periodic motions of a two-body system with flexible connection in an elliptical orbit. Nonlinear Dyn 104, 3479–3496 (2021). https://doi.org/10.1007/s11071-021-06516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06516-x

Keywords

Navigation