Skip to main content

Designing an authenticated Hash function with a 2D chaotic map


This paper shows the use of four sets of coefficient values of the 2D chaotic map to generate pseudo-random number generators. We demonstrate that the generated sequences are random by applying NIST suite 800-22-a and TestU01 tests. The generated random sequences are used to implement a stream cipher and are applied to encrypt images. To detect if the images have been modified, we propose to use the random sequences as keys for a hash function based on the pseudo-dot product. This hash can be used as a message authentication code in the images to detect if the stored information has been compromised. The proposed schemes can be used to encrypt and authenticate any digital data not only images. The random sequences generator is probed also in a high-performance microcontroller STM32F746ZG obtaining a throughput of 173.35 Kbit/s.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Al-Hazaimeh, O.M., Al-Jamal, M.F., Alhindawi, N., Omari, A.: Image encryption algorithm based on Lorenz chaotic map with dynamic secret keys Neural Comput. Appl. 31, 2395–2405 (2019).

  2. 2.

    Bibak, K., Kapron, B., Srinivasan, V., Tóth, L.: On a variant of multilinear modular hashing with applications to authentication and secrecy codes. In: 2016 International Symposium on Information Theory and Its Applications (ISITA), pp. 320–324 (2016)

  3. 3.

    Chakraborti, A., Chattopadhyay, A., Hassan, M., Nandi, M.: TriviA: A fast and secure authenticated encryption scheme. Cryptology ePrint Archive, Report 2015/590 (2015).

  4. 4.

    Chakraborti, A., Chattopadhyay, A., Hassan, M., Nandi, M.: TriviA and uTriviA: two fast and secure authenticated encryption schemes. J. Cryptogr. Eng. 8(1), 29–48 (2018).

    Article  Google Scholar 

  5. 5.

    Chakraborty, D., Mancillas-Lopez, C., Sarkar, P.: Stes: A stream cipher based low cost scheme for securing stored data. Cryptology ePrint Archive, Report 2013/347 (2013).

  6. 6.

    De Micco, L., Antonelli, M., Larrondo, H.: Stochastic degradation of the fixed-point version of 2D-chaotic maps. Chaos Solitons Fractals 104, 477–484 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    de la Fraga, L., Torres-Pérez, E., Tlelo-Cuautle, E., Mancillas-López, C.: Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017).

    Article  Google Scholar 

  8. 8.

    Ecuyer, L., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(22) (2007).

  9. 9.

    Gan, Z., Chai, X., Yuan, K., Lu, Y.: A novel image encryption algorithm based on LFT based S-boxes and chaos. Multimed. Tools Appl. 77(7), 8759–8783 (2018)

    Article  Google Scholar 

  10. 10.

    Gao, H., Zhang, Y., Liang, S., Li, D.: A new chaotic algorithm for image encryption. Chaos Solitons Fractals 29(2), 393–399 (2006).

    Article  MATH  Google Scholar 

  11. 11.

    García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., Tlelo-Cuautle, E.: Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos Solitons Fractals 133, 109646 (2020).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gonzalez, O., Woods, R.: Digital Image Processing Fourth Edition. Pearson Education Limited, London (2018)

    Google Scholar 

  13. 13.

    Guillén-Fernández, O., Meléndez-Cano, A., Tlelo-Cuautle, E., Núñez-Pérez, J.C., de Jesus Rangel-Magdaleno, J.: On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission. PLoS ONE 14(2), e0209618 (2019)

    Article  Google Scholar 

  14. 14.

    Halevi, S., Krawczyk, H.: MMH: Software message authentication in the gbit/second rates. In: Biham, E. (ed.) Fast Software Encryption, pp. 172–189. Springer, Berlin Heidelberg (1997).

    Chapter  MATH  Google Scholar 

  15. 15.

    Kadir, R., Shahril, R., Maarof, M.A.: A modified image encryption scheme based on 2D chaotic map. In: International Conference on Computer and Communication Engineering (ICCCE’10), pp. 1–5 (2010).

  16. 16.

    Lemire, D., Kaser, O.: Strongly universal string hashing is fast. Comput. J. 57(11), 1624–1638 (2018).

    Article  Google Scholar 

  17. 17.

    Li, B., Liao, X., Jiang, Y.: A novel image encryption scheme based on improved random number generator and its implementation. Nonlinear Dyn. 95(3), 1781–1805 (2019).

    Article  MATH  Google Scholar 

  18. 18.

    Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE Multimed. 25(4), 46–56 (2018).

    Article  Google Scholar 

  19. 19.

    Li, C., Tan, K., Feng, B., Lu, J.: The graph structure of the generalized discrete Arnold’s cat map. IEEE Trans. Comput. 1, 1 (2021).

    Article  Google Scholar 

  20. 20.

    Li, C., Zhang, Y., Xie, E.Y.: When an attacker meets a cipher-image in 2018: a year in review. J. Inf. Secur. Appl. 48, 102361 (2019).

    Article  Google Scholar 

  21. 21.

    Li, J., Liu, H.: Colour image encryption based on advanced encryption standard algorithm with two-dimensional chaotic map. IET Inf. Secur. 7(4), 265–270 (2013)

    Article  Google Scholar 

  22. 22.

    Liu, H., Wang, X., kadir, A.: Image encryption using dna complementary rule and chaotic maps. Appl. Soft Comput. 12(5), 1457–1466 (2012)

    Article  Google Scholar 

  23. 23.

    Liu, W., Sun, K., Zhu, C.: A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 84, 26–36 (2016).

    Article  Google Scholar 

  24. 24.

    Liu, Z., Wang, Y., Zhao, Y., Zhang, L.: A stream cipher algorithm based on 2D coupled map lattice and partitioned cellular automata. Nonlinear Dyn. 101, 1383–1396 (2020).

    Article  Google Scholar 

  25. 25.

    Nosrati, K., Volos, C., Azemi, A.: Cubature Kalman filter-based chaotic synchronization and image encryption. Sig. Process. Image Commun. 58, 35–48 (2017)

    Article  Google Scholar 

  26. 26.

    Pareek, N., Patidar, V., Sud, K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006).

  27. 27.

    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications (2010). Software and SP800-22rev1a.pdf file, last date checked: Feb 28th, 2020

  28. 28.

    Sarkar, P.: A new multi-linear universal hash family. Cryptology ePrint Archive, Report 2008/216 (2008).

  29. 29.

    Sarkar, P.: Modes of operations for encryption and authentication using stream ciphers supporting an initialisation vector. Cryptogr. Commun. 6(3), 189–231 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Sprott, J.: Automatic generation of strange attractors. Comput. Graph. 17(3), 325–332 (1993).

    Article  Google Scholar 

  31. 31.

    Vaidyanathan, S., Akgul, A., Kaçar, S., Çavuşoğlu, U.: A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. Eur. Phys. J. Plus 133(2), 46 (2018)

    Article  Google Scholar 

  32. 32.

    Wong, K.W., Sin-Hung Kwok, B., Law, W.S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372(15), 2645–2652 (2008)

    Article  Google Scholar 

  33. 33.

    Yildiz, M.Z., Boyraz, O., Guleryuz, E., Akgul, A., Hussain, I.: A novel encryption method for dorsal hand vein images on a microcomputer. IEEE Access 7, 60850–60867 (2019)

    Article  Google Scholar 

Download references


Authors would like to thank the anonymous reviewers for their valuable comments which have helped to improve the quality of this article.

Author information



Corresponding author

Correspondence to Luis Gerardo De la Fraga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De la Fraga, L.G., Mancillas-López, C. & Tlelo-Cuautle, E. Designing an authenticated Hash function with a 2D chaotic map. Nonlinear Dyn 104, 4569–4580 (2021).

Download citation


  • 2D chaotic map
  • Data integrity
  • Keyed hash
  • Stream cipher
  • Chaos-based cryptography