Skip to main content
Log in

A power-form method for dynamic systems: investigating the steady-state response of strongly nonlinear oscillators by their equivalent Duffing-type equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to apply a transformation method that replaces the elastic forces of the original equation of motion with a power-form elastic term. The accuracy obtained from the derived equivalent equations of motion is evaluated by studying the finite-amplitude damped, forced vibration of a vertically suspended load body supported by incompressible, homogeneous, and isotropic viscohyperelastic elastomer materials. Numerical integrations of the original equations of two oscillators described by neo-Hookean and Mooney–Rivlin viscohyperelastic elastomer material models, and their equivalent equations of motion, are compared to the frequency–amplitude steady-state solutions obtained from the harmonic balance and the averaging methods. It is shown from numerical integrations and approximate steady-state solutions that the equivalent equations predict well the original system dynamic response despite having higher system nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Minorsky, N.: Introduction to non-linear mechanics, Part II, Analytical methods of non-linear mechanics. The David W. taylor model basin U. S. N. Report #546. MIT Libraries: Cambridge MA USA, September (1945)

  2. Caughey, T.K.: Equivalent linearisation techniques. J. Acoust. Soc. Am. 35, 1706–1711 (1963)

    Article  MathSciNet  Google Scholar 

  3. Iwan, W.D.: On defining equivalent systems for certain ordinary non-linear differential equations. Int. J. Non-Linear Mech. 4, 325–334 (1969)

    Article  Google Scholar 

  4. Iwan, W.D.: A generalization of the concept of equivalent linearization. Int. J. Non-Linear Mech. 4, 279–287 (1973)

    Article  MathSciNet  Google Scholar 

  5. Shina, S.C., Srinivasan, P.: A weighted mean square method of linearization in non-linear oscillators. J. Sound Vib. 16, 139–148 (1971)

    Article  Google Scholar 

  6. Spanos, P.–T. D.: Linearization techniques for nonlinear dynamical systems, California Institute of Technology, Report EERL 76 – 4, (1976)

  7. Spanos, P.-T.D., Iwan, W.D.: On the existence and uniqueness of solutions generated by equivalent linearization. Int. J. NonLin. Mech. 13(2), 71–78 (1979)

    Article  MathSciNet  Google Scholar 

  8. Agrwal, V.P., Denman, H.H.: Weighted linearization technique for period approximation in large amplitude non-linear oscillations. J. Sound Vib. 99, 463–473 (1985)

    Article  Google Scholar 

  9. Langley, R.S.: An investigation of multiple solutions yielded by the equivalent linearization method. J. Sound Vib. 127(2), 271–281 (1988)

    Article  MathSciNet  Google Scholar 

  10. Yuste, S.B., Sánchez, A.M.: A weighted mean-square method of cubication for non-linear oscillators. J. Sound Vib. 134, 423–433 (1989)

    Article  Google Scholar 

  11. Yuste, S.B.: Cubication of non-linear oscillators using the principle of harmonic balance. Int. J. Nonlin. Mech. 27, 347–356 (1992)

    Article  Google Scholar 

  12. Cai, J., Wu, X., Li, Y.P.: An equivalent nonlinearization method for strongly nonlinear oscillations. Mech. Res. Commun. 32, 553–560 (2005)

    Article  Google Scholar 

  13. Farzaneh, Y., Tootoonchi, A.A.: Global Error Minimization method for solving strongly nonlinear oscillator differential equations. Comput. Math. Appl. 59, 2887–2895 (2010)

    Article  MathSciNet  Google Scholar 

  14. Wu, B.S., Sun, W.P.: Construction of approximate analytical solutions to strongly nonlinear damped oscillators. Arch. Appl. Mech. 81(8), 1017–1030 (2011)

    Article  Google Scholar 

  15. Belendez, A., Alvarez, M.L., Fernandez, E., Pascual, I.: Cubication of conservative nonlinear oscillators. Eur. J. Phys. 30, 973–981 (2009)

    Article  Google Scholar 

  16. Beléndez, A., Méndez, D.I., Fernández, E., Marini, S., Pascual, I.: An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method. Phys. Lett. A 373, 2805–2809 (2009)

    Article  Google Scholar 

  17. Elías-Zúñiga, A., Martínez-Romero, O., C órdoba-Díaz, R. K.:Approximate Solution for the Duffing-Harmonic Oscillator by the Enhanced Cubication Method. Math. Probl. Eng. vol. 2012, Article ID 618750, 12 pages

  18. Elías-Zúñiga, A., Martínez-Romero, O.: Accurate Solutions of Conservative Nonlinear Oscillators by the Enhanced Cubication Method. Math. Probl. Eng. vol. 2013, Article ID 842423, 9 pages

  19. Elías-Zúñiga, A., Martínez-Romero, O.: Investigation of the equivalent representation form of damped strongly nonlinear oscillators by a nonlinear transformation approach. J. Appl. Math. vol. 2013, Article ID 245092, 7 pages

  20. Elías-Zúñiga, A.: “Quintication” method to obtain approximate analytical solutions of non-linear oscillators. Appl. Math. Comput. 243, 849–855 (2014)

  21. Elías-Zúñiga, A., Palacios-Pineda, L.M., Olvera-Trejo, D., Martínez-Romero, O.: Lyapunov Equivalent Representation Form of Forced, Damped, Nonlinear. Two Degree-of-Freedom Syst. Appl. Sci. 8, 649 (2018)

    Google Scholar 

  22. Elías-Zúñiga, A., Palacios-Pineda, L.M., Mart ínez-Romero, O., Olvera, D.: Equivalent representation form in the sense of Lyapunov, of nonlinear forced, damped second order differential equations. Nonlinear Dynam. 92(4), 2143–2158 (2018)

    Article  Google Scholar 

  23. Elías-Zúñiga, A., Jim énez-Cedeño, I.H., Martínez-Romero, O., Olvera-Trejo, D.: Equivalent power-form transformation for fractal Bratu’s equation. Fractals 29(1), 2150019 (2021)

  24. Elías-Zúñiga, A., Palacios-Pineda, L.M., Jim énez-Cedeño, I.H., Martínez-Romero, O., Olvera-Trejo, D.A.: Fractal model for current generation in porous electrodes. J. Electroanal. Chem. 880, 114883 (2021)

    Article  Google Scholar 

  25. Elías-Zúñiga, A., Palacios-Pineda, L.M., Jim énez-Cedeño, I.H., Martínez-Romero, O., Olvera-Trejo, D.: Equivalent power-form representation of the fractal Toda oscillator. Fractals 29(1), 2150034 (2021)

  26. Big-Alabo, A.: A simple cubication method for approximate solution of nonlinear Hamiltonian oscillators. Int. J. Mech. Eng. Educ. https://doi.org/10.1177/0306419018822489

  27. Big-Alabo, A., Ekpruke, E.O., Ossia, C. V., Oke, J. D., Collins, O. O.: Generalized oscillator model for nonlinear vibration analysis using quasi-static cubication method. Int. J. Mech. Eng. Educ. https://doi.org/10.1177/0306419019896586

  28. Pilipchuk, V.N.: Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. J. Sound Vib. 192(1), 43–64 (1996)

    Article  MathSciNet  Google Scholar 

  29. Pilipchuk, V.N.: Oscillators with a generalized power-form elastic term. J. Sound Vib. 270, 470–472 (2004)

    Article  MathSciNet  Google Scholar 

  30. Pilipchuk, V.N.: Strongly nonlinear vibrations of damped oscillators with two nonsmooth limits. J. Sound Vib. 302, 398–402 (2007)

    Article  MathSciNet  Google Scholar 

  31. Beatty, M.F., Chow, A.C.: Finite amplitude vibrations of a Mooney–Rivlin Oscillator. Arch. Rational Mech. Anal. 102, 141–166 (1988)

    Article  MathSciNet  Google Scholar 

  32. Beatty, M.F., Zhou, Z.: Finite amplitude, free vibrations of a body supported by incompressible, nonlinear viscoelastic shear mountings. Int. J. Solids Struc. 27, 355–370 (1990)

    Article  Google Scholar 

  33. Destrade, M., Saccomandi, G.: Finite-amplitude inhomogeneous waves in Mooney-Rivlin viscoelastic solids. Wave Motion 40, 251–262 (2004)

    Article  MathSciNet  Google Scholar 

  34. Kovacic, I.: Forced vibrations of oscillators with a purely nonlinear power-form restoring force. J. Sound Vib. 330, 4313–4327 (2011)

    Article  Google Scholar 

  35. Pasquetti, E., Gonçalves, P.B.: Application of Taylor expansions and symmetry concepts to oscillators with nonpolynomial nonlinearities. J. Comput. Appl. Math. 6(1), 57–70 (2011)

    Google Scholar 

  36. Tozen, Vibration Isolator: Noise & vibration control product. VI-0120, SAITAMA 342-008 JAPAN, 2020

  37. Mickens, R.E.: A generalization of the method of harmonic balance. Int. J. Non Linear Mech. 111, 515–518 (1986)

    MathSciNet  MATH  Google Scholar 

  38. Luo, A.C.J., Huang, J.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18, 1661–1671 (2012)

    Article  MathSciNet  Google Scholar 

  39. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, New York (1985)

    Book  Google Scholar 

  40. Holmes, P.J., Rand, D.A.: The bifurcation of Duffing’s equation: An application of catastrophe theory. J. Sound Vib. 44, 237–253 (1976)

  41. Elías-Zúñiga, A., Beatty, M.F.: Forced vibrations of a body supported by viscohyperelastic shear mountings. J. Eng. Math. 40, 333–353 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank financial support from Tecnológico de Monterrey-Campus Monterrey, through the Research Group in Nanotechnology and Devices Design. Also, the authors are thankful to the reviewers for their valuable suggestions that help us to improve the quality of our paper.

Funding

This research was funded by Tecnológico de Monterrey through the Research Group of Nanotechnology for Devices Design, and by the Consejo Nacional de Ciencia y Tecnología de México (Conacyt), Project Numbers 242269, 255837, 296176, and National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography (MADiT) LN299129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Elías-Zúñiga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elías-Zúñiga, A., Palacios-Pineda, L.M., Puma-Araujo, S. et al. A power-form method for dynamic systems: investigating the steady-state response of strongly nonlinear oscillators by their equivalent Duffing-type equation. Nonlinear Dyn 104, 3065–3075 (2021). https://doi.org/10.1007/s11071-021-06461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06461-9

Keywords

Navigation