Skip to main content
Log in

Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The study proposed a feedforward– feedback combined architecture to control a piezoelectric motion system with rate-dependent hysteresis nonlinearities. First, the feedforward control that considered the inverse rate-dependent Prandtl–Ishlinskii (RDPI) model was presented. Based on the inverse RDPI model, a formula that characterizes the output of the inverse compensation considering modeling errors and uncertainties was obtained. More precisely, the output of the inverse compensation of RDPI model consists of an invertible linear term and a bounded nonlinear term. Afterward, the feedforward control is extended with a feedback control architecture. In order to satisfy performance criteria in the presence of the uncertainties, the design of the feedback controller was based on the performances inclusion theorem from interval techniques. Experiments were conducted on a piezoelectric actuator to confirm the effectiveness of the combined feedforward–feedback control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Binnig, G., Smith, D.P.: Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum. 57(8), 1688–1689 (1986)

    Article  Google Scholar 

  2. Wadikhaye, S.P., Yong, Y.K., Reza Moheimani, S.: A serial-kinematic nanopositioner for high-speed atomic force microscopy. Rev. Sci. Instrum. 85(10), 1–10 (2014)

    Article  Google Scholar 

  3. Fleming, A.J., Leang, K.K.: Design, modeling and control of nanopositioning systems. Springer Switzerland, ISBN 978-3-319-06616-5 (2014)

  4. Dechev, N., Cleghorn, W.L., Mills, J.K.: Microassembly of 3d mems structures utilizing a mems microgripper with a robotic manipulator. In: 2003 IEEE International Conference on Robotics and Automation, vol. 3, pp. 3193–3199, (2003)

  5. Macian, V., Payri, R., Ruiz, S., Bardi, M., Plazas, A.H.: Experimental study of the relationship between injection rate shape and diesel ignition using a novel piezo-actuated direct-acting injector. Appl. Energy 118, 100–113 (2014)

    Article  Google Scholar 

  6. Subramanian, R.G., Heertjes, M., de Hoog, T.: A model-based inferential feedforward approach to deal with hysteresis in a motion system. In: 2018 Annual American Control Conference (ACC), pp. 2934–2939, (2018)

  7. Guo, D., Nagel, W.S., Clayton, G.M., Leang, K.K.: Spatial-temporal trajectory redesign for dual-stage nanopositioning systems with application in AFM. IEEE/ASME Trans. Mechatron. 25(2), 558–569 (2020)

    Article  Google Scholar 

  8. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  9. Devasia, S., Eleftheriou, E., Moheimani, S.R.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  10. Visone, C., Zamboni, W.: Loop orientation and Preisach modeling in hysteresis systems. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Article  Google Scholar 

  11. Tan, X., Baras, J.S.: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40(9), 1469–1480 (2004)

    Article  MathSciNet  Google Scholar 

  12. Ge, P., Jouaneh, M.: Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precis. Eng. 20(2), 99–111 (1997)

    Article  Google Scholar 

  13. Zhang, J.: Modeling of a bending supercoiled polymer (SCP) artificial muscle. IEEE Robot. Autom. Lett. 5(3), 3822–3829 (2020)

    Article  Google Scholar 

  14. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions, vol. 121. Springer, (1996)

  15. Al-Nadawi, Y.K., Tan, X., Khalil, H.K.: Inversion-free control of hysteresis nonlinearity using an adaptive conditional servomechanism. In: 2019 American Control Conference (ACC), pp. 3676–3682, (2019)

  16. Rakotondrabe, M.: Multivariable classical Prandtl–Ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator. Nonlinear Dyn. 89(1), 481–499 (2017)

    Article  Google Scholar 

  17. Rakotondrabe, M.: Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 8(2), 428–431 (2010)

    Article  Google Scholar 

  18. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model, a survey. Arch. Comput. Methods Eng. 16(2), 161–188 (2009)

    Article  Google Scholar 

  19. Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Control Syst. Technol. 4(3), 209–216 (1996)

    Article  Google Scholar 

  20. Mayergoyz, I.: Hysteresis models from the mathematical and control theory points of view. J. Appl. Phys. 57(8), 3803–3805 (1985)

    Article  Google Scholar 

  21. Krejci, P., Kuhnen, K.: Inverse control of systems with hysteresis and creep. IEE Proc. Control Theory Appl. 148(3), 185–192 (2001)

    Article  Google Scholar 

  22. Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys. Conf. Ser. 138, 1–24 (2008)

    Article  Google Scholar 

  23. Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl–Ishlinskii approach. Eur. J. Control 9(4), 407–418 (2003)

    Article  Google Scholar 

  24. Al Janaideh, M., Naldi, R., Marconi, L., Krejčí, P.: A hybrid system for a class of hysteresis nonlinearity: modeling and compensation. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 5380–5385, (2012)

  25. Al Janaideh, M., Krejčí, P.: An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds. Physica B Condens. Matter 406(8), 1528–1532 (2011)

    Article  Google Scholar 

  26. Al Janaideh, M., Rakotondrabe, M., Aljanaideh, O.: Further results on hysteresis compensation of smart micropositioning systems with the inverse Prandtl–Ishlinskii compensator. IEEE Trans. Control Syst. Technol. 24(2), 428–439 (2015)

    Article  Google Scholar 

  27. Rakotondrabe, PM.: Piezoelectric systems for precise and high dynamic positioning: design, modeling, estimation and control. PhD thesis, (2014)

  28. Escareno, J.-A., Rakotondrabe, M., Habineza, D.: Backstepping-based robust-adaptive control of a nonlinear 2-DOF piezoactuator. Control Eng. Pract. 41, 57–71 (2015)

    Article  Google Scholar 

  29. Al Janaideh, M., Rakotondrabe, M., Al-Darabsah, I., Aljanaideh, O.: Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control Eng. Pract. 72, 29–41 (2018)

    Article  Google Scholar 

  30. Al Janaideh, M., Krejčí, P.: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. 18(5), 1498–1507 (2012)

    Article  Google Scholar 

  31. Habineza, D., Zouari, M., Hammouche, M., Le Gorrec, Y., Rakotondrabe, M.: Characterization and modeling of the temperature effect on the piezoelectric tube actuator. IFAC-PapersOnLine 49(21), 354–360 (2016)

    Article  Google Scholar 

  32. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control, vol. 40. Prentice hall New Jersey, (1996)

  33. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall Englewood Cliffs, (1966)

  34. Jaulin, L. Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, Springer-Verlag London. ISBN 978-1-85233-219-8 (2001)

  35. Boche, R.E.: Complex interval arithmetic with some applications. Master’s thesis, San Jose State College, (1966)

  36. Kharitonov, V. L.: The asymptotic stability of the equilibrium state of a family of systems of linear differential equations. Differentsialnye Uravneniya J. 14(11), 2086–2088 (1978)

  37. Khadraoui, S., Rakotondrabe, M., Lutz, P.: Interval modeling and robust control of piezoelectric microactuators. IEEE Trans. Control Syst. Technol. 20(2), 486–494 (2011)

    Article  Google Scholar 

  38. Rakotondrabe, M., Khadraoui, S.: Design of piezoelectric actuators with guaranteed performances using the performances inclusion theorem. In: Smart Materials-Based Actuators at the Micro/Nano-Scale, pp. 41–59, (2013)

  39. Khadraoui, S., Rakotondrabe, M., Lutz, P.: Optimal design of piezoelectric cantilevered actuators with guaranteed performances by using interval techniques. IEEE/ASME Trans. Mechatron. 19, 1660–1668 (2014)

    Article  Google Scholar 

  40. Rakotondrabe, M.: Performances inclusion for stable interval systems. In: Proceedings of the 2011 American Control Conference, pp. 4367–4372, (2011)

  41. Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)

    Article  MathSciNet  Google Scholar 

  42. Hammouche, M., Lutz, P., Rakotondrabe, M.: Robust and optimal output-feedback control for interval state-space model: application to a two-degrees-of-freedom piezoelectric tube actuator. J. Dyn. Syst. Meas. Control 141(2), 1–14 (2019)

    Article  Google Scholar 

  43. Xie, H., Rakotondrabe, M., Régnier, S.: Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. Rev. Sci. Instrum. 80(4), 1–3 (2009)

    Article  Google Scholar 

  44. Khadraoui, S., Rakotondrabe, M., Lutz, P.: Combining h-inf approach and interval tools to design a low order and robust controller for systems with parametric uncertainties: application to piezoelectric actuators. International Journal of control 85(3), 251–259 (2012)

    Article  MathSciNet  Google Scholar 

  45. Hammouche, M., Mohand-Ousaid, A., Lutz, P., Rakotondrabe, M.: Robust interval luenberger observer-based state feedback control: application to a multi-DOF micropositioner. IEEE Trans. Control Syst. Technol. 27(6), 2672–2679 (2018)

    Article  Google Scholar 

Download references

Funding

Funding: this study was funded by the French ANR agency, with Number ANR-17-CE05-0014-01 (CODE-Track Project), the Natural Sciences and Engineering Research Council of Canada, and Mobility funding for researchers (the French Embassy in Ottawa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micky Rakotondrabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Janaideh, M., Rakotondrabe, M. Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dyn 104, 3385–3405 (2021). https://doi.org/10.1007/s11071-021-06460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06460-w

Keywords

Navigation