Skip to main content
Log in

Epilepsy as a dynamical disorder orchestrated by epileptogenic zone: a review

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Epilepsy is a group of chronic neurological disorders characterized with recurrent and hypersynchronous discharge. In the epileptic brain, epileptogenic zone (EZ) with abnormal firing patterns is considered as the culprit of hyperexcitable neuronal behaviors, increasingly manifested as alterations in dynamics. Meanwhile, the brain networks of epileptic patients show greater seizure susceptibility than those from healthy controls, referred as epileptogenic networks. There is a growing recognition of an intimate, but also complex, relationship between the self-organization of epileptogenic networks and abnormal dynamics of the EZ. In this review, we discussed the short- and long-term effects of recurrent epileptiform discharge on neural circuits, involving the regulation of connection weights and network topology. In addition, progressive abnormalities associated with secondary epileptogenesis imply that the excitability of regions connected with EZ may be enhanced, leading to frequent transitions from normal to epileptic states. From the perspective of network dynamics, EZ plays a dynamical pacemaker role in the evolution of epileptogenic networks as well as the activities generated by these networks. It may provide novel insights into the mechanism of epileptogenesis and inspire new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moraes, M.F.D., de Castro Medeiros, D., Mourao, F.A.G., Cancado, S.A.V., Cota, V.R.: Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy Behav. 106838 (2019)

  2. Connors, B.W., Gutnick, M.J., Prince, D.A.: Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48, 1302 (1982)

    Google Scholar 

  3. Young, J.C., Nasser, H.M., Casillas-Espinosa, P.M., O’Brien, T.J., Jackson, G.D., Paolini, A.G.: Multiunit cluster firing patterns of piriform cortex and mediodorsal thalamus in absence epilepsy. Epilepsy Behav. 97, 229–243 (2019)

    Google Scholar 

  4. da Silva, F.H.L., Harding, G.F.A.: Transition to seizure in photosensitive epilepsy. Epilepsy Res. 97, 278–282 (2011)

    Google Scholar 

  5. Milton, J.G.: Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav. 18, 33–44 (2010)

    Google Scholar 

  6. Stefanescu, R.A., Shivakeshavan, R.G., Talathi, S.S.: Computational models of epilepsy. Seizure 21, 748–759 (2012)

    Google Scholar 

  7. Ryzí, M., Brázdil, M., Novák, Z., Hemza, J., Chrastina, J., Ošlejšková, H., Rektor, I., Kuba, R.: Long-term outcomes in patients after epilepsy surgery failure. Epilepsy Res. 110, 71–77 (2015)

    Google Scholar 

  8. Woldman, W., Cook, M.J., Terry, J.R.: Evolving dynamic networks: an underlying mechanism of drug resistance in epilepsy? Epilepsy Behav. 94, 264–268 (2019)

    Google Scholar 

  9. Panzica, F., Varotto, G., Rotondi, F., Spreafico, R., Franceschetti, S.: Identification of the epileptogenic zone from stereo-EEG signals: a connectivity-graph theory approach. Front. Neurol. 4, 175 (2013)

    Google Scholar 

  10. Bernasconi, N., Duchesne, S., Janke, A., Lerch, J., Collins, D.L., Bernasconi, A.: Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. Neuroimage 23, 717–723 (2004)

    Google Scholar 

  11. Taylor, P.N., Han, C.E., Schoene-Bake, J.-C., Weber, B., Kaiser, M.: Structural connectivity changes in temporal lobe epilepsy: Spatial features contribute more than topological measures. NeuroImage Clin 8, 322–328 (2015)

    Google Scholar 

  12. Hutchings, F., Han, C.E., Keller, S.S., Weber, B., Taylor, P.N., Kaiser, M.: Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput. Biol. 11, e1004642 (2015)

    Google Scholar 

  13. Sinha, N., Dauwels, J., Kaiser, M., Cash, S.S., Brandon Westover, M., Wang, Y., Taylor, P.N.: Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332 (2017)

    Google Scholar 

  14. Goodfellow, M., Rummel, C., Abela, E., Richardson, M.P., Schindler, K., Terry, J.R.: Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016)

    Google Scholar 

  15. Benjamin, O., Fitzgerald, T.H., Ashwin, P., Tsaneva-Atanasova, K., Chowdhury, F., Richardson, M.P., Terry, J.R.: A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J. Math. Neurosci. 2, 1 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Terry, J.R., Benjamin, O., Richardson, M.P.: Seizure generation: the role of nodes and networks. Epilepsia 53, e166–e169 (2012)

    Google Scholar 

  17. Bayati, M., Valizadeh, A.: Effect of synaptic plasticity in the structure and dynamics of disordered networks of coupled neurons. Physical Review E. 86, 011925 (2012)

    Google Scholar 

  18. Torres, J.J., Kappen, H.J.: Emerging phenomena in neural networks with dynamic synapses and their computational implications. Front. Comput. Neurosci. 7, 30 (2013)

    Google Scholar 

  19. Schindewolf, C., Kim, D., Bel, A., Rotstein, H.G.: Complex patterns in networks of hyperexcitable neurons. Theoret. Comput. Sci. 633, 71–82 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Volo, M.D., Torcini, A.: Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses. Phys. Rev. Lett. 121, 128301 (2018)

    Google Scholar 

  21. Majak, K., Pitkänen, A.: Do seizures cause irreversible cognitive damage? Evidence from animal studies. Epilepsy Behav. 5, 35–44 (2004)

    Google Scholar 

  22. Citraro, R., Iannone, M., Leo, A., De Caro, C., Nesci, V., Tallarico, M., Abdalla, K., Palma, E., Arturi, F., De Sarro, G., Constanti, A., Russo, E.: Evaluation of the effects of liraglutide on the development of epilepsy and behavioural alterations in two animal models of epileptogenesis. Brain Res. Bull. 153, 133–142 (2019)

    Google Scholar 

  23. Hempel, C.M., Hartman, K.H., Wang, X.-J., Turrigiano, G.G., Nelson, S.B.: Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol. 83, 3031–3041 (2000)

    Google Scholar 

  24. Bernasconi, N., Natsume, J., Bernasconi, A.: Progression in temporal lobe epilepsy: differential atrophy in mesial temporal structures. Neurology 65, 223–228 (2005)

    Google Scholar 

  25. Bragin, A., Wilson, C.L., Engel, J.: Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41, S144–S152 (2000)

    Google Scholar 

  26. Bernasconi, N.: Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain 126, 462–469 (2003)

    Google Scholar 

  27. Yang, C., Liu, Z., Luan, G., Wang, Q.: The extension of epileptogenicity as the driving force of the epileptogenic network evolution and complex symptoms. Brain Res. 1748, 147073 (2020)

    Google Scholar 

  28. Kobylarek, D., Iwanowski, P., Lewandowska, Z., Limphaibool, N., Szafranek, S., Labrzycka, A., Kozubski, W.: Advances in the potential biomarkers of epilepsy. Front. Neurol. 10, 685 (2019)

    Google Scholar 

  29. Liguori, C., Costa, C., Franchini, F., Izzi, F., Spanetta, M., Cesarini, E.N., Di Santo, S., Manfredi, N., Farotti, L., Romoli, M., Lanari, A., Salvadori, N., Parnetti, L., Calabresi, P., Mercuri, N.B., Placidi, F.: Cognitive performances in patients affected by late-onset epilepsy with unknown etiology: a 12-month follow-up study. Epilepsy Behav. 101, 106592 (2019)

    Google Scholar 

  30. Süße, M., Hamann, L., Flöel, A., von Podewils, F.: Nonlesional late-onset epilepsy: semiology, EEG, cerebrospinal fluid, and seizure outcome characteristics. Epilepsy Behav. 91, 75–80 (2019)

    Google Scholar 

  31. Ochoa, J.G., Hentgarden, D., Paulzak, A., Ogden, M., Pryson, R., Lammle, M., Rusyniak, W.G.: Subtle pathological changes in neocortical temporal lobe epilepsy. Epilepsy Behav. 71, 17–22 (2017)

    Google Scholar 

  32. Jacobs, J., Staba, R., Asano, E., Otsubo, H., Wu, J.Y., Zijlmans, M., Mohamed, I., Kahane, P., Dubeau, F., Navarro, V., Gotman, J.: High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 98, 302–315 (2012)

    Google Scholar 

  33. Jirsch, J.D.: High-frequency oscillations during human focal seizures. Brain 129, 1593–1608 (2006)

    Google Scholar 

  34. Bragin, A., Engel, J., Wilson, C.L., Fried, I., Mathern, G.W.: Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40, 127–137 (1999)

    Google Scholar 

  35. Leung, H., Zhu, C.X.L., Chan, D.T.M., Poon, W.S., Shi, L., Mok, V.C.T., Wong, L.K.S.: Ictal high-frequency oscillations and hyperexcitability in refractory epilepsy. Clin. Neurophysiol. 126, 2049–2057 (2015)

    Google Scholar 

  36. Kobayashi, K., Agari, T., Oka, M., Yoshinaga, H., Date, I., Ohtsuka, Y., Gotman, J.: Detection of seizure-associated high-frequency oscillations above 500Hz. Epilepsy Res. 88, 139–144 (2010)

    Google Scholar 

  37. Hao, J., Cui, Y., Liu, B., Yu, L., Lin, Y., Xia, Y., Yao, D., Guo, D.: Roles of very fast ripple (500–1000Hz) in the hippocampal network during status epilepticus. Int. J. Neural Syst. (2020). https://doi.org/10.1142/S0129065721500027

    Article  Google Scholar 

  38. Frauscher, B., Bartolomei, F., Kobayashi, K., Cimbalnik, J., van 't Klooster, M.A., Rampp, S., Otsubo, H., Höller, Y., Wu, J.Y., Asano, E., Engel, J., Kahane, P., Jacobs, J., Gotman, J.: High-frequency oscillations: the state of clinical research. Epilepsia. 58, 1316–1329 (2017)

    Google Scholar 

  39. Koc, G., Gokcil, Z., Bek, S., Kasikci, T., Eroglu, E., Odabasi, Z.: Effects of continuous theta burst transcranial magnetic stimulation on cortical excitability in patients with idiopathic generalized epilepsy. Epilepsy Behav. 77, 26–29 (2017)

    Google Scholar 

  40. Koenig, T., Smailovic, U., Jelic, V.: Past, present and future EEG in the clinical workup of dementias. Psychiatry Res. Neuroimaging 306, 111182 (2020)

    Google Scholar 

  41. Tatum, W.O., Rubboli, G., Kaplan, P.W., Mirsatari, S.M., Radhakrishnan, K., Gloss, D., Caboclo, L.O., Drislane, F.W., Koutroumanidis, M., Schomer, D.L., Kasteleijn-Nolst Trenite, D., Cook, M., Beniczky, S.: Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin. Neurophysiol. 129, 1056–1082 (2018)

    Google Scholar 

  42. Liu, X., Wu, S., Daif, A., Sun, T., Chauhan, V., Issa, N.P., Rose, S., Tao, J.X.: Clinical implications of scalp ictal EEG pattern in patients with temporal lobe epilepsy. Clin. Neurophysiol. 130, 1604–1610 (2019)

    Google Scholar 

  43. Fangsaad, T., Assawabumrungkul, S., Visudtibhan, A.: Clinical course and long-term outcome in children with alteration of consciousness underwent continuous EEG monitoring: a prospective observational study in Thailand. J. Clin. Neurosci. 47, 93–96 (2018)

    Google Scholar 

  44. van Mierlo, P., Carrette, E., Hallez, H., Vonck, K., Van Roost, D., Boon, P., Staelens, S.: Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56, 1122–1133 (2011)

    Google Scholar 

  45. Chionis, D., Dokhane, A., Ferroukhi, H., Pautz, A.: Application of causality analysis on nuclear reactor systems. Chaos 29, 043126 (2019)

    MathSciNet  Google Scholar 

  46. Bartolomei, F., Chauvel, P., Wendling, F.: Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 131, 1818–1830 (2008)

    Google Scholar 

  47. Lehnertz, K., Elger, C.E.: Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr. Clin. Neurophysiol. 95, 108–117 (1995)

    Google Scholar 

  48. Andrzejak, R.G., Widman, G., Lehnertz, K., Rieke, C., David, P., Elger, C.E.: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 44, 129–140 (2001)

    Google Scholar 

  49. Andrzejak, R.G., Schindler, K., Rummel, C.: Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 86, 046206 (2012)

    Google Scholar 

  50. Yang, C., Luan, G., Liu, Z., Wang, Q.: Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings. Physica A 523, 507–515 (2019)

    Google Scholar 

  51. Li, X., Ouyang, G., Yao, X., Guan, X.: Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. Phys. Lett. A 333, 164–171 (2004)

    MATH  Google Scholar 

  52. Suffczynski, P., da Silva, F.H.L., Parra, J., Velis, D.N., Bouwman, B.M., van Rijn, C.M., van Hese, P., Boon, P., Khosravani, H., Derchansky, M., Carlen, P., Kalitzin, S.: Dynamics of epileptic phenomena determined from statistics of Ictal transitions. IEEE Trans. Biomed. Eng. 53, 524–532 (2006)

    Google Scholar 

  53. Panahi, S., Aram, Z., Jafari, S., Ma, J., Sprott, J.C.: Modeling of epilepsy based on chaotic artificial neural network. Chaos, Solitons Fractals 105, 150–156 (2017)

    MathSciNet  Google Scholar 

  54. Panahi, S., Shirzadian, T., Jalili, M., Jafari, S.: A new chaotic network model for epilepsy. Appl. Math. Comput. 346, 395–407 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Yan, J., Wang, Y., Ouyang, G., Yu, T., Li, X.: Using max entropy ratio of recurrence plot to measure electrocorticogram changes in epilepsy patients. Physica A 443, 109–116 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A.: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 21, 199–211 (2011)

    Google Scholar 

  57. Ngamga, E.J., Bialonski, S., Marwan, N., Kurths, J., Geier, C., Lehnertz, K.: Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data. Phys. Lett. A 380, 1419–1425 (2016)

    MathSciNet  Google Scholar 

  58. Lehnertz, K., Elger, C.E.: Can epileptic seizures be predicted? evidence from nonlinear time series analysis of brain electrical activity. Physiol. Rev. Lett. 80, 5019–5022 (1998)

    Google Scholar 

  59. Stacey, W., Le Van Quyen, M., Mormann, F., Schulze-Bonhage, A.: What is the present-day EEG evidence for a preictal state? Epilepsy Res. 97, 243–251 (2011)

    Google Scholar 

  60. Suffczynski, P., Kalitzin, S.: Epileptic transitions: model predictions and experimental validation. J. Clin. Neurophysiol. 22, 13 (2005)

    Google Scholar 

  61. Laxpati, N.G., Kasoff, W.S., Gross, R.E.: Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11, 508–526 (2014)

    Google Scholar 

  62. Kalitzin, S.N., Velis, D.N., da Silva, F.H.L.: Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 17, 310–323 (2010)

    Google Scholar 

  63. Balamurugan, E., Aggarwal, M., Lamba, A., Dang, N., Tripathi, M.: Perceived trigger factors of seizures in persons with epilepsy. Seizure 22, 743–747 (2013)

    Google Scholar 

  64. Gilby, K.L., O’Brien, T.J.: Epilepsy, autism, and neurodevelopment: kindling a shared vulnerability? Epilepsy Behav. 26, 370–374 (2013)

    Google Scholar 

  65. da Silva, F.H.L., Blanes, W., Kalitzin, S.N., Parra, J., Suffczynski, P., Velis, D.N.: Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44, 72–83 (2003)

    Google Scholar 

  66. Freeman, W.J., Kozma, R., Werbos, P.J.: Biocomplexity: adaptive behavior in complex stochastic dynamical systems. Biosystems 59, 109–123 (2001)

    Google Scholar 

  67. Tankus, A.: Exploring human epileptic activity at the single-neuron level. Epilepsy Behav. 58, 11–17 (2016)

    Google Scholar 

  68. Kalitzin, S., Velis, D., Suffczynski, P., Parra, J., da Silva, F.H.L.: Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin. Neurophysiol. 116, 718–728 (2005)

    Google Scholar 

  69. Barker, B.S., Nigam, A., Ottolini, M., Gaykema, R.P., Hargus, N.J., Patel, M.K.: Pro-excitatory alterations in sodium channel activity facilitate subiculum neuron hyperexcitability in temporal lobe epilepsy. Neurobiol. Dis. 108, 183–194 (2017)

    Google Scholar 

  70. Truccolo, W., Donoghue, J.A., Hochberg, L.R., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Brown, E.N., Halgren, E., Cash, S.S.: Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 635–641 (2011)

    Google Scholar 

  71. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G.: Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)

    Google Scholar 

  72. Avoli, M., de Curtis, M., Köhling, R.: Does interictal synchronization influence ictogenesis? Neuropharmacology 69, 37–44 (2013)

    Google Scholar 

  73. Righes Marafiga, J., Vendramin Pasquetti, M., Calcagnotto, M.E.: GABAergic interneurons in epilepsy: more than a simple change in inhibition. Epilepsy Behav. (2020). https://doi.org/10.1016/j.yebeh.2020.106935

    Article  Google Scholar 

  74. Rich, S., Chameh, H.M., Rafiee, M., Ferguson, K., Skinner, F.K., Valiante, T.A.: Inhibitory network bistability explains increased interneuronal activity prior to seizure onset. Front. Neural Circuits 13, 81 (2020)

    Google Scholar 

  75. Proix, T., Jirsa, V.K., Bartolomei, F., Guye, M., Truccolo, W.: Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat. Commun. 9, 1088 (2018)

    Google Scholar 

  76. Perucca, P., Dubeau, F., Gotman, J.: Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain 137, 183–196 (2014)

    Google Scholar 

  77. Wang, Y., Goodfellow, M., Taylor, P.N., Baier, G.: Phase space approach for modeling of epileptic dynamics. Phys. Rev. E. 85, 061918 (2012)

    Google Scholar 

  78. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C.: On the nature of seizure dynamics. Brain 137, 2210–2230 (2014)

    Google Scholar 

  79. Guo, D., Xia, C., Wu, S., Zhang, T., Zhang, Y., Xia, Y., Yao, D.: Stochastic fluctuations of permittivity coupling regulate seizure dynamics in partial epilepsy. Sci. China Technol. Sci. 60, 995–1002 (2017)

    Google Scholar 

  80. Proix, T., Bartolomei, F., Chauvel, P., Bernard, C., Jirsa, V.K.: Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J. Neurosci. 34, 15009–15021 (2014)

    Google Scholar 

  81. Zhang, L., Wang, Q., Baier, G.: Dynamical features of a focal epileptogenic network model for stimulation-based control. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1856–1865 (2020)

    Google Scholar 

  82. Zhang, L., Wang, Q., Baier, G.: Spontaneous transitions to focal-onset epileptic seizures: a dynamical study. Chaos 30, 103114 (2020)

    MathSciNet  Google Scholar 

  83. Badawy, R.A.B., Harvey, A.S., Macdonell, R.A.L.: Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy–Part 1. J. Clin. Neurosci. 16, 355–365 (2009)

    Google Scholar 

  84. Whelan, C.D., Altmann, A., Botía, J.A., et al.: Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141, 391–408 (2018)

    Google Scholar 

  85. Focke, N.K., Yogarajah, M., Bonelli, S.B., Bartlett, P.A., Symms, M.R., Duncan, J.S.: Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage 40, 728–737 (2008)

    Google Scholar 

  86. van Mierlo, P., Carrette, E., Hallez, H., Raedt, R., Meurs, A., Vandenberghe, S., Van Roost, D., Boon, P., Staelens, S., Vonck, K.: Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54, 1409–1418 (2013)

    Google Scholar 

  87. Wilke, C., van Drongelen, W., Kohrman, M., He, B.: Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clin. Neurophysiol. 120, 1449–1456 (2009)

    Google Scholar 

  88. Zhang, L., Liang, Y., Li, F., Sun, H., Peng, W., Du, P., Si, Y., Song, L., Yu, L., Xu, P.: Time-varying networks of inter-ictal discharging reveal epileptogenic zone. Front. Comput. Neurosci. 11, 77 (2017)

    Google Scholar 

  89. Ben-Ari, Y., Tremblay, E., Ottersen, O.P., Naquet, R.: Evidence suggesting secondary epileptogenic lesions after kainic acid: pretreatment with diazepam reduces distant but not local brain damage. Brain Res. 165, 362–365 (1979)

    Google Scholar 

  90. Alamir, M., Welsh, J.S., Goodwin, G.C.: Synaptic plasticity based model for epileptic seizures. Automatica 47, 1183–1192 (2011)

    MathSciNet  MATH  Google Scholar 

  91. Wiemann, M., Altrup, U., Speckmann, E.-J.: Epileptic neurons induce augmenting synaptic depolarizations in non-epileptic neurons (buccal ganglia, Helix pomatia). Neurosci. Lett. 237, 101–104 (1997)

    Google Scholar 

  92. Lehnertz, K., Ansmann, G., Bialonski, S., Dickten, H., Geier, C., Porz, S.: Evolving networks in the human epileptic brain. Physica D 267, 7–15 (2014)

    MathSciNet  Google Scholar 

  93. Kurths, J.: Bistable firing pattern in a neural network model. Front. Comput. Neurosci. 13, 8 (2019)

    Google Scholar 

  94. Gilson, M.: STDP in recurrent neuronal networks. Front. Comput. Neurosci. 4, 23 (2010)

    Google Scholar 

  95. Luccioli, S., Angulo-Garcia, D., Cossart, R., Malvache, A., Módol, L., Sousa, V.H., Bonifazi, P., Torcini, A.: Modeling driver cells in developing neuronal networks. PLoS Comput. Biol. 14, e1006551 (2018)

    Google Scholar 

  96. Bayati, M., Valizadeh, A., Abbassian, A., Cheng, S.: Self-organization of synchronous activity propagation in neuronal networks driven by local excitation. Front. Comput. Neurosci. 9, 69 (2015)

    Google Scholar 

  97. Raiesdana, S., Firoozabadi, S.M.P., Gholpayegani, S.M.H.: An evolutionary network model of epileptic phenomena. Neurocomputing 74, 617–628 (2011)

    Google Scholar 

  98. Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002)

    Google Scholar 

  99. Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M.: Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148 (2002)

    Google Scholar 

  100. Thomson, A.M.: Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J. Physiol. 502, 131–147 (1997)

    Google Scholar 

  101. Gonzalez-Burgos, G.: Synaptic efficacy during repetitive activation of excitatory inputs in primate dorsolateral prefrontal cortex. Cereb. Cortex 14, 530–542 (2004)

    Google Scholar 

  102. Molaee-Ardekani, B., Benquet, P., Bartolomei, F., Wendling, F.: Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: from ‘altered structure’ to ‘dysfunction.’ Neuroimage 52, 1109–1122 (2010)

    Google Scholar 

  103. Gutkin, B.S., Laing, C.R., Colby, C.L., Chow, C.C., Ermentrout, G.B.: Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J. Comput. Neurosci. 11, 121–134 (2001)

    Google Scholar 

  104. Yang, C., Liu, Z., Wang, Q., Luan, G., Zhai, F.: Epileptic seizures in a heterogeneous excitatory network with short-term plasticity. Cogn Neurodyn. (2020). https://doi.org/10.1007/s11571-020-09582-w

    Article  Google Scholar 

  105. González, O.C., Krishnan, G.P., Timofeev, I., Bazhenov, M.: Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol. Dis. 130, 104485 (2019)

    Google Scholar 

  106. Jiang, H., Cai, Z., Worrell, G.A., He, B.: Multiple oscillatory push–pull antagonisms constrain seizure propagation. Ann. Neurol. 86, 683–694 (2019)

    Google Scholar 

  107. Wasling, P., Hanse, E., Gustafsson, B.: Long-term depression in the developing hippocampus: low induction threshold and synapse nonspecificity. J. Neurosci. 22, 1823–1830 (2002)

    Google Scholar 

  108. Lippman-Bell, J.J., Zhou, C., Sun, H., Feske, J.S., Jensen, F.E.: Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity. Mol. Cell. Neurosci. 76, 11–20 (2016)

    Google Scholar 

  109. Lynch, G., Kramár, E.A., Babayan, A.H., Rumbaugh, G., Gall, C.M.: Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 64, 27–36 (2013)

    Google Scholar 

  110. David, O., Woźniak, A., Minotti, L., Kahane, P.: Preictal short-term plasticity induced by intracerebral 1 Hz stimulation. Neuroimage 39, 1633–1646 (2008)

    Google Scholar 

  111. Bertram, E.: The relevance of kindling for human epilepsy. Epilepsia 48, 65–74 (2007)

    Google Scholar 

  112. Wang, Y., Chen, Z.: An update for epilepsy research and antiepileptic drug development: toward precise circuit therapy. Pharmacol. Ther. 201, 77–93 (2019)

    Google Scholar 

  113. Ma, J., Yang, Z., Yang, L., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A. 20, 639–659 (2019)

    Google Scholar 

  114. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    MathSciNet  Google Scholar 

  115. Roth, B.L.: DREADDs for neuroscientists. Neuron 89, 683–694 (2016)

    Google Scholar 

  116. Adamantidis, A.R., Zhang, F., Aravanism, A.M., Deisseroth, K., Lecea, L.D.: Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007)

    Google Scholar 

  117. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Google Scholar 

  118. Yang, L.-X., Jin, C.-L., Zhu-Ge, Z.-B., Wang, S., Wei, E.-Q., Bruce, I.C., Chen, Z.: Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 138, 1089–1096 (2006)

    Google Scholar 

  119. Sun, H., Zhang, S., Zhong, K., Xu, Z., Zhu, W., Fang, Q., Wu, D., Hu, W., Xiao, B., Chen, Z.: Mode-dependent effect of low-frequency stimulation targeting the hippocampal CA3 subfield on amygdala-kindled seizures in rats. Epilepsy Res. 90, 83–90 (2010)

    Google Scholar 

  120. Neal, E.G., Maciver, S., Schoenberg, M.R., Vale, F.L.: Surgical disconnection of epilepsy network correlates with improved outcomes. Seizure 76, 56–63 (2020)

    Google Scholar 

  121. Briellmann, R.S., Jackson, G.D., Pell, G.S., Mitchell, L.A., Abbott, D.F.: Structural abnormalities remote from the seizure focus: a study using T2 relaxometry at 3 T. Neurology 63, 2303–2308 (2004)

    Google Scholar 

  122. Bernasconi, N., Bernasconi, A., Caramanos, Z., Andermann, F., Dubeau, F., Arnold, D.L.: Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann. N. Y. Acad. Sci. 911, 495–500 (2006)

    Google Scholar 

  123. Scott, R.C.: Abnormalities in hippocampi remote from the seizure focus: a T2 relaxometry study. Brain 126, 1968–1974 (2003)

    Google Scholar 

  124. Klviinen, R., Salmenper, T.: Do recurrent seizures cause neuronal damage? A series of studies with MRI volumetry in adults with partial epilepsy. Prog. Brain Res. 135, 279–295 (2002)

    Google Scholar 

  125. Meldrum, B.S.: Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog. Brain Res. 135, 3–11 (2002)

    Google Scholar 

  126. Wu, J., Gao, M., Shen, J., Qiu, S., Kerrigan, J.F.: Mechanisms of intrinsic epileptogenesis in human gelastic seizures with hypothalamic hamartoma. CNS Neurosci. Ther. 21, 104–111 (2015)

    Google Scholar 

  127. Castro, L.H., Ferreira, L.K., Teles, L.R., Jorge, C.L., Arantes, P.R., Ono, C.R., Adda, C.C., Valerio, R.F.: Epilepsy syndromes associated with hypothalamic hamartomas. Seizure 16, 50–58 (2007)

    Google Scholar 

  128. Scholly, J., Staack, A.M., Kahane, P., Scavarda, D., Régis, J., Hirsch, E., Bartolomei, F.: Hypothalamic hamartoma: epileptogenesis beyond the lesion? Epilepsia 58, 32–40 (2017)

    Google Scholar 

  129. Scholly, J., Valenti, M.-P., Staack, A.M., Strobl, K., Bast, T., Kehrli, P., Steinhoff, B.J., Hirsch, E.: Hypothalamic hamartoma: is the epileptogenic zone always hypothalamic? Arguments for independent (third stage) secondary epileptogenesis. Epilepsia 54, 123–128 (2013)

    Google Scholar 

  130. Goddard, G.V.: Development of epileptic seizures through brain stimulation at lowintensity. Nature 214, 1020–1021 (1967)

    Google Scholar 

  131. Goodfellow, M., Taylor, P.N., Wang, Y., Garry, D.J., Baier, G.: Modelling the role of tissue heterogeneity in epileptic rhythms: tissue heterogeneity in epileptic rhythms. Eur. J. Neurosci. 36, 2178–2187 (2012)

    Google Scholar 

  132. Wang, Y., Trevelyan, A.J., Valentin, A., Alarcon, G., Taylor, P.N., Kaiser, M.: Mechanisms underlying different onset patterns of focal seizures. PLoS Comput. Biol. 13, e1005475 (2017)

    Google Scholar 

  133. Wang, Y., Goodfellow, M., Taylor, P.N., Baier, G.: Dynamic mechanisms of neocortical focal seizure onset. PLoS Comput. Biol. 10, e1003787 (2014)

    Google Scholar 

  134. Kalitzin, S., Koppert, M., Petkov, G., Velis, D., da Silva, F.H.L.: Computational model prospective on the observation of proictal states in epileptic neuronal systems. Epilepsy Behav. 22, S102–S109 (2011)

    Google Scholar 

  135. Kalitzin, S., Koppert, M., Petkov, G., da Silva, F.H.L.: Multiple oscillatory states in models of collective neuronal dynamics. Int. J. Neural Syst. 24, 1450020 (2014)

    Google Scholar 

  136. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116, 473–496 (1952)

    Google Scholar 

  137. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equation. Proc. R. Soc. Lond. Ser. B. 221, 87–102 (1984)

    Google Scholar 

  138. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I Homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  139. Jansen, B.H., Zouridakis, G., Brandt, M.E.: A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol. Cybern. 68, 275–283 (1993)

    Google Scholar 

  140. Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508 (2002)

    Google Scholar 

  141. Wang, Z., Tian, C., Dhamala, M., Liu, Z.: A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network. Sci. Rep. 7, 561 (2017)

    Google Scholar 

  142. Gerster, M., Berner, R., Sawicki, J., Zakharova, A., Škoch, A., Hlinka, J., Lehnertz, K., Schöll, E.: FitzHugh–Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos 30, 123130 (2020)

    MathSciNet  Google Scholar 

  143. Liu, Z., Luan, G., Yang, C., Guan, Y., Liu, C., Wang, J., Wang, M., Wang, Q.: Distinguishing dependent-stage secondary epileptogenesis in a complex case of giant hypothalamic hamartoma with assistance of a computational method. Front. Neurol. 11, 478 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (Grants 11932003, 81790650, 81790654).

Author information

Authors and Affiliations

Authors

Contributions

CY contributed to conceptualization, investigation, writing–original draft. ZL contributed to resources, writing—review, and editing. QW contribted to writing—review and editing. QW contributed to project administration and funding acquisition. ZL contributed to investigation, writing—review and editing. GL supervised the study.

Corresponding author

Correspondence to Qishao Wang.

Ethics declarations

Conflict of interest

The authors declare there are no any interest conflict with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, Z., Wang, Q. et al. Epilepsy as a dynamical disorder orchestrated by epileptogenic zone: a review. Nonlinear Dyn 104, 1901–1916 (2021). https://doi.org/10.1007/s11071-021-06420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06420-4

Keywords

Navigation