Skip to main content
Log in

Coexistence of double-parameter nonlinear dynamics and metastable chaos for bistable asymmetric composite laminated square panel under combined external and parametric excitations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the double-parameter multi-pulse jumping chaotic vibrations and metastable chaos of the bistable asymmetric composite laminated square panel under combined external and parametric excitations for the first time. The double-parameter multi-pulse jumping chaotic motions are studied by using the extended Melnikov method for the bistable asymmetric composite laminated square panel. It is indicated that there exist the Shilnikov type multi-pulse jumping orbits. The occurred mechanism of the metastable chaos is first analyzed. A theoretical explanation is given for coexisting in the double-parameter multi-pulse jumping chaotic vibrations and metastable chaotic behaviors. Using the double-parameter Lyapunov exponents, the double-parameter nonlinear dynamics of the bistable asymmetric composite laminated square panel are analyzed. According to the numerical simulation results, the in-depth investigation of the topological changes is obtained for the double-parameter multi-pulse jumping chaotic vibrations. It is found that the dynamic snap-through phenomena and the coupled effects of the external and parametric excitations on the double-parameter nonlinear dynamic behaviors are obtained for the bistable asymmetric composite laminated square panel. It is also observed that the change of the external excitation can only affect the complexity of the chaotic vibrations. However, the parametric excitations determine the types of the chaotic vibrations. There exists a direct connection between the occurrence of the metastable state chaos and the increase of parametric excitations for the bistable asymmetric composite laminated square panel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission [29], Copyright Elsevier, 2019)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Emam, S.A., Inman, D.J.: A review on bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67, 060803 (2015)

    Article  Google Scholar 

  2. Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15, 175–194 (1981)

    Article  Google Scholar 

  3. Hyer, M.W.: Calculations of the room-temperature shapes of unsymmetric laminates. J. Compos. Mater. 15, 296–310 (1981)

    Article  Google Scholar 

  4. Hyer, M.W.: The room-temperature shapes of four-layer unsymmetric cross-ply laminates. J. Compos. Mater. 16, 318–340 (1982)

    Article  Google Scholar 

  5. Zhang, Z., Li, Y., Yu, X.C., Li, X.H., Wu, H.L., Wu, H.P., Jiang, S.F., Chai, G.Z.: Bistable morphing composite structures: a review. Thin-Walled Struct. 142, 74–97 (2019)

    Article  Google Scholar 

  6. Zhang, W., Zheng, Y., Liu, T., Guo, X.Y.: Multi-pulse jumping double-parameter chaotic dynamics of eccentric rotating ring truss antenna under combined parametric and external excitations. Nonlinear Dyn. 98, 761–800 (2019)

    Article  Google Scholar 

  7. Liu, T., Zhang, W., Wu, M.Q., Zheng, Y., Zhang, Y.F.: Metastable nonlinear vibrations: third chaos of bistable asymmetric composite laminated square shallow shell under foundation excitation. Compos. Struct. 255, 112966 (2021)

    Article  Google Scholar 

  8. Daynes, S., Lachenal, X., Weaver, P.M.: Concept for morphing airfoil with zero torsional stiffness. Thin-Walled Struct. 94, 129–134 (2015)

    Article  Google Scholar 

  9. Kuder, I.K., Fasel, U., Ermanni, P., Arrieta, A.F.: Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates. Smart Mater. Struct. 25, 115001 (2016)

    Article  Google Scholar 

  10. Nicassio, F., Scarselli, G., Pinto, F., Ciampa, F., Iervolino, O., Meo, M.: Low energy actuation technique of bistable composites for aircraft morphing. Aerosp. Sci. Technol. 75, 35–46 (2018)

    Article  Google Scholar 

  11. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24, 1303–1312 (2013)

    Article  Google Scholar 

  12. Pan, D.K., Dai, F.H.: Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Convers. Manag. 169, 149–160 (2018)

    Article  Google Scholar 

  13. Lee, A.J., Inman, D.J.: A multifunctional bistable laminate: snap-through morphing enabled by broadband energy harvesting. J. Intell. Mater. Syst. Struct. 29, 2528–2543 (2018)

    Article  Google Scholar 

  14. Chen, L.H., Pan, S.Q., Fei, Y.Y., Zhang, W., Yang, F.H.: Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting. Appl. Phys. A 125, 242 (2019)

    Article  Google Scholar 

  15. Zhang, Z., Chen, B.B., Lu, C.D., Wu, H.L., Wu, H.P., Jiang, S.F., Chai, G.Z.: A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface. Compos. Struct. 180, 933–943 (2017)

    Article  Google Scholar 

  16. Mallol, P., Mao, H.N., Tibert, G.: Experiments and simulations of the deployment of a bistable composite boom. J. Spacecr. Rocket. 55, 292–302 (2017)

    Article  Google Scholar 

  17. Mattioni, F., Weaver, P.M., Friswell, M.I.: Multistable composite plates with piecewise variation of lay-up in the planform. Int. J. Solids Struct. 46, 151–164 (2009)

    Article  MATH  Google Scholar 

  18. Pirrera, A., Avitabile, D., Weaver, P.M.: Bistable plates for morphing structures: a refined analytical approach with high-order polynomials. Int. J. Solids Struct. 47, 3412–3425 (2010)

    Article  MATH  Google Scholar 

  19. Chillara, V.S.C., Dapino, M.J.: Mechanically-prestressed bistable composite laminates with weakly coupled equilibrium shapes. Compos. B Eng. 111, 251–260 (2017)

    Article  Google Scholar 

  20. Brunetti, M., Vidoli, S., Vincenti, A.: Bistability of orthotropic shells with clamped boundary conditions: an analysis by the polar method. Compos. Struct. 194, 388–397 (2018)

    Article  Google Scholar 

  21. Wu, Z., Li, H., Friswell, M.I.: Advanced nonlinear dynamic modelling of bi-stable composite plates. Compos. Struct. 201, 582–596 (2018)

    Article  Google Scholar 

  22. Emam, S.A.: Snap-through and free vibration of bistable composite laminates using a simplified Rayleigh–Ritz model. Compos. Struct. 206, 403–414 (2018)

    Article  Google Scholar 

  23. Lee, A.J., Inman, D.J.: Electromechanical modelling of a bistable plate with macro fiber composites under nonlinear vibrations. J. Sound Vib. 446, 326–342 (2019)

    Article  Google Scholar 

  24. Zhang, Z., Wu, H.L., He, X.Q., Wu, H.P., Bao, Y.M., Chai, G.Z.: The bistable behaviors of carbon-fiber/epoxy anti-symmetric composite shells. Compos. B Eng. 47, 190–199 (2013)

    Article  Google Scholar 

  25. Zhang, Z., Wu, H.P., Ye, G.F., Wu, H.L., He, X.Q., Chai, G.Z.: Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells. Compos. Struct. 112, 368–377 (2014)

    Article  Google Scholar 

  26. Cantera, M.A., Romera, J.M., Adarraga, I., Mujika, F.: Modelling and testing of the snap-through process of bi-stable cross-ply composites. Compos. Struct. 120, 41–52 (2015)

    Article  Google Scholar 

  27. Wang, B., Ge, C., Fancey, K.S.: Snap-through behaviour of a bistable structure based on viscoelastically generated prestress. Compos. B Eng. 114, 23–33 (2017)

    Article  Google Scholar 

  28. Emam, S.A., Hobeck, J., Inman, D.J.: Experimental investigation into the nonlinear dynamics of a bistable laminate. Nonlinear Dyn. 95, 3019–3039 (2019)

    Article  Google Scholar 

  29. Zhang, W., Liu, Y.Z., Wu, M.Q.: Theory and experiment of nonlinear vibrations and dynamic snap-through phenomena for bi-stable asymmetric laminated composite square panels under foundation excitation. Compos. Struct. 225, 111140 (2019)

    Article  Google Scholar 

  30. Seffen, K.A.: ‘Morphing’ bistable orthotropic elliptical shallow shells. Proc. R. Soc. A. Math. Phys. Eng. Sci. 463, 67–83 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Seffen, K.A., Guest, S.D.: Prestressed morphing bistable and neutrally stable shells. J. Appl. Mech. 78, 011002 (2011)

    Article  Google Scholar 

  32. Yorke, J.A., Yorke, E.D.: Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model. J. Stat. Phys. 21, 263–277 (1979)

    Article  MathSciNet  Google Scholar 

  33. Bovier, A., Den Hollander, F.: Metastability: A Potential-Theoretic Approach. Springer, Berlin (2016)

    MATH  Google Scholar 

  34. Schultz, P., Hellmann, F., Webster, K.N., Kurths, J.: Bounding the first exit from the basin: Independence times and finite-time basin stability. Chaos Interdiscip. J. Nonlinear Sci. 28, 043102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Awrejcewicz, J., Krysko, V.A.: Chaos in Structural Mechanics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  36. Awrejcewicz, J., Krysko, V.A., Papkova, I.V., Krysko, A.V.: Deterministic Chaos in One Dimensional Continuous Systems. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  37. Awrejcewicz, J., Papkova, I.V., Krylova, E.U., Krysko, V.A.: Wavelet-based analysis of the regular and chaotic dynamics of rectangular flexible plates subjected to shear-harmonic loading. Shock. Vib. 19, 979–994 (2012)

    Article  Google Scholar 

  38. Rega, G., Settimi, V., Lenci, S.: Chaos in one-dimensional structural mechanics. Nonlinear Dyn. 102, 785–834 (2020)

    Article  Google Scholar 

  39. Awrejcewicz, J., Krysko, A.V.: Wavelet-based analysis of parametric vibrations of flexible plates. Int. Appl. Mech. 39, 997–1028 (2003)

    Article  MathSciNet  Google Scholar 

  40. Awrejcewicz, J., Krysko, V.A.: Nonlinear coupled problems in dynamics of shells. Int. J. Eng. Sci. 41, 587–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Krysko, A., Awrejcewicz, J., Saveleva, N.E.: Stability, bifurcation and chaos of closed flexible cylindrical shells. Int. J. Mech. Sci. 50, 247–274 (2008)

    Article  MATH  Google Scholar 

  42. Awrejcewicz, J., Krysko, V.A., Krysko, A.V.: Complex parametric vibrations of flexible rectangular plates. Meccanica 39, 221–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Krysko, V.A., Awrejcewicz, J., Komarov, S.A.: Nonlinear deformations of spherical panels subjected to transversal load action. Comput. Methods Appl. Mech. Eng. 194, 3108–3126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Krysko, V.A., Awrejcewicz, J., Shchekaturova, T.V.: Chaotic vibrations of spherical and conical axially symmetric shells. Arch. Appl. Mech. 74, 338–358 (2005)

    Article  MATH  Google Scholar 

  45. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  46. Camassa, R., Kovacic, G., Tin, S.K.: A Melnikov method for homoclinic orbits with many pulse. Arch. Ration. Mech. Anal. 143, 105–193 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yao, M.H., Zhang, W., Zu, W.J.: Multi-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt. J. Sound Vib. 331, 2624–2653 (2012)

    Article  Google Scholar 

  48. Yao, M.H., Zhang, W., Zu, W.J.: Multi-pulse heteroclinic orbits and chaotic motions in a parametrically excited viscoelastic moving belt. Int. J. Bifurc. Chaos 23, 151–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, W., Zhang, J.H., Yao, M.H., Yao, Z.G.: Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate. Acta Mech. 211, 23–47 (2010)

    Article  MATH  Google Scholar 

  50. Zhang, J.H., Zhang, W.: Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a honeycomb sandwich plate. Acta Mech. 223, 1047–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, J.H., Zhang, W., Hao, Y.X.: Multi-pulse chaotic dynamics for nonautonomous nonlinear systems and application to a FGM plate. Int. J. Bifurc. Chaos 24, 1450068 (2014)

    Article  MATH  Google Scholar 

  52. Zhang, W., Hao, W.L.: Multi-pulse chaotic dynamics of six-dimensional non-autonomous nonlinear system for a composite laminated piezoelectric rectangular plate. Nonlinear Dyn. 73, 1005–1033 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, Q.L., Zhang, W., Dowell, E.H.: Detecting multi-pulse chaotic dynamics of high-dimensional non-autonomous nonlinear system for circular mesh antenna. Int. J. Non-Linear Mech. 102, 25–40 (2018)

    Article  Google Scholar 

  54. Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Ivankov, A.O.: Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  55. Andrianov, I.V., Awrejcewicz, J., Danishevskyy, V.V.: Asymptotical Mechanics of Composites. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  56. Awrejcewicz, J., Holicke, M.M.: Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  57. Zhang, W., Zhang, J.H., Yao, M.H.: The extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate. Nonlinear Anal. Real World Appl. 11, 1442–1457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd edn. Academic Press, New York (2012)

    MATH  Google Scholar 

  59. Franca, M., Pospíšil, M.: New global bifurcation diagrams for piecewise smooth systems: transversality of homoclinic points does not imply chaos. J. Differ. Equ. 266, 1429–1461 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  61. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  62. Darriba, A., Maffione, N.P., Cincotta, P.M., Giordano, C.M.: Comparative study of variational chaos indicators and ODEs’ numerical integrators. Int. J. Bifurc. Chaos 22, 1230033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant Nos. 11832002 and 11427801, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, W. & Liu, T. Coexistence of double-parameter nonlinear dynamics and metastable chaos for bistable asymmetric composite laminated square panel under combined external and parametric excitations. Nonlinear Dyn 104, 2071–2098 (2021). https://doi.org/10.1007/s11071-021-06414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06414-2

Keywords

Navigation