Skip to main content

Advertisement

Log in

Study on electromechanical coupling torsional resonance characteristics of gear system driven by PMSM: a case on shearer semi-direct drive cutting transmission system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the electromechanical coupling torsional resonance characteristics of the multistage gear transmission system driven by the low-speed and high-power permanent magnet synchronous motor (PMSM) are studied. Considering the PMSM electromagnetic effect and bending-torsional vibration characteristics, the mechanical-electromagnetic coupling dynamic model suitable for the speed change process is established. Then, the PMSM electromagnetic stiffness and damping characteristics are analyzed through theoretical derivation. On the basis of electromagnetic stiffness, the influence law of electromagnetic effect on the gear transmission system natural frequency and vibration characteristics is revealed systematically. By both of Campbell diagram and modal energy distribution, the potential resonance points under the influence of internal and external excitation are initially acquired. Ultimately, the potential resonance points are identified by frequency sweep analysis and time domain simulation, and the energy concentration components at resonance point are further analyzed. The results show that the electromagnetic effect reduces the first-order natural frequency and has little influence on others. Moreover, the semi-direct drive cutting transmission system in this paper has the resonance risk caused by the gear time-varying meshing stiffness when the PMSM speed is close to 330 r/min, which should be paid more attention in actual operation. This study can provide some guidance for the design and speed regulation of the gear drive system driven by high-power PMSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Tang, X., Yang, W., Hu, X.: A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle. Mech. Syst. Signal Pr. 85, 329–338 (2017)

    Article  Google Scholar 

  2. Chen, H.T., Wang, X.H., Gao, H.C.: Dynamic characteristics of wind turbine gear transmission system with random wind and the effect of random backlash on system stability. P. I. Mech. Eng. C-J Mec. 231(14), 2590–2597 (2016)

    Article  Google Scholar 

  3. Shi, P.M., Han, D.Y., Liu, B.: Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation. Chinese Phys B 19(9), 112–117 (2010)

    Article  Google Scholar 

  4. Jiang, S., Li, W., Sheng L.C.: Nonlinear torsional vibration analysis and control of semidirect electromechanical coupling transmission system in shearer. Shock Vib. (2019)

  5. Teng, W., Jiang, R., Ding, X.: Detection and quantization of bearing fault in direct drive wind turbine via comparative analysis. Shock Vib. (2016)

  6. Bilgin, N., Demircin, M.A., Copur, H.: Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results. Int. J. Rock Ch. Min. 43, 139–156 (2006)

    Article  Google Scholar 

  7. Wei, Q., Wang, X.Y.: Chaos controlling of permanent magnet synchronous motor base on dither signal. J. Vib. Control 19(16), 2541–2550 (2013)

    Article  Google Scholar 

  8. Sheng, L.C., Li, W., Jiang, S.: Nonlinear torsional vibration analysis of motor rotor system in shearer semi-direct drive cutting unit under electromagnetic and load excitation. Nonlinear Dynam. 96(2), 1677–1691 (2019)

    Article  MATH  Google Scholar 

  9. Qiu, X., Han, Q., Chu, F.: Dynamic modeling and analysis of the planetary gear under pitching base motion. Int. J. Mech. Sci 141, 31–45 (2018)

    Article  Google Scholar 

  10. Zhang, X., Yu, S.D.: Torsional vibration of crank shaft in an engine–propeller nonlinear dynamical system. J. Sound Vib. 319(1–2), 491–514 (2009)

    Article  Google Scholar 

  11. Sheng, L.C., Li, W., Wang, Y.Q.: Sensorless control of a shearer short-range cutting interior permanent magnet synchronous motor based on a new sliding mode observer. IEEE Access 51, 8439–18450 (2017)

    Google Scholar 

  12. Li, Z., Peng, Z.: Nonlinear dynamic response of a multi-degree of freedom gear system dynamic model coupled with tooth surface characters: a case study on coal cutters. Nonlinear Dyn. 84(1), 271–286 (2016)

    Article  Google Scholar 

  13. Liu, S., Ai, H., Lin, Z.: Analysis of vibration characteristics and adaptive continuous perturbation control of some torsional vibration system with backlash. Chaos Solitons Frac. 103, 151–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feki, N., Clerc, G., Velex, P.: An integrated electro-mechanical model of motor-gear units-applications to tooth fault detection by electric measurements. Mech. Syst. Signal Pr. 29, 377–390 (2012)

    Article  Google Scholar 

  15. Li, Z., Zheng, L., Gao, W.: Electromechanical coupling mechanism and control strategy for in-wheel-motor-driven electric vehicles. IEEE Trans. Ind. Electron. 66(6), 4524–4533 (2018)

    Article  Google Scholar 

  16. Yang, X., Lu, D., Zhang, J.: Dynamic electromechanical coupling resulting from the air-gap fluctuation of the linear motor in machine tools. Int. J. Mach. Tool Manu. 94, 100–108 (2015)

    Article  Google Scholar 

  17. Szolc, T., Konowrocki, R., Michajłow, M.: An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors. Mech. Syst. Signal Pr. 49(1–2), 118–134 (2014)

    Article  Google Scholar 

  18. Tan, J., Zhu, C., Song, C.: Study on the dynamic modeling and natural characteristics of wind turbine drivetrain considering electromagnetic stiffness. Mech. Mach. Theory 134, 541–561 (2019)

    Article  Google Scholar 

  19. Bai, W., Qin, D., Wang, Y.: Dynamic characteristic of electromechanical coupling effects in motor-gear system. J. Sound Vib. 423, 50–64 (2018)

    Article  Google Scholar 

  20. Kambrath, J.K., Yoon, C., Mathew, J.: Mitigation of resonance vibration effects in marine propulsion. IEEE T. Ind. Electron. 66(8), 6159–6169 (2018)

    Article  Google Scholar 

  21. Huo, J., Wu, H., Sun, W.: Electromechanical coupling dynamics of TBM main drive system. Nonlinear Dyn. 90(4), 2687–2710 (2017)

    Article  Google Scholar 

  22. Yi, Y.Y., Qin, D.T., Liu, C.: Investigation of electromechanical coupling vibration characteristics of an electric drive multistage gear system. Mech. Mach. Theory 121, 446–459 (2018)

    Article  Google Scholar 

  23. Xie, B., Wang, S., Wang, Y.: Magnetically induced rotor vibration in dual-stator permanent magnet motors. J. Sound Vib. 347, 184–199 (2015)

    Article  Google Scholar 

  24. Chang, S.C., Lin, B.C., Lue, Y.F.: Dither signal effects on quenching chaos of a permanent magnet synchronous motor in electric vehicles. J. Vib. Control 17(12), 1912–1918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, X., Wei, H., Deng, T.: Investigation of electromechanical coupling torsional vibration and stability in a high-speed permanent magnet synchronous motor driven system. Appl. Math. Model. 64, 235–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ju, J.Y., Li, W., Wang, Y.Q.: Dynamics and nonlinear feedback control for torsional vibration bifurcation in main transmission system of scraper conveyor direct-driven by high-power PMSM. Nonlinear Dyn. 93(2), 307–321 (2018)

    Article  MATH  Google Scholar 

  27. Wang, X., Suh, C.S.: Nonlinear time-frequency control of PM synchronous motor instability applicable to electric vehicle application. Int. J. Dyn. Control 4(4), 400–412 (2016)

    Article  MathSciNet  Google Scholar 

  28. Sheng, L.C., Li, W., Xin, G.F.: Nonlinear torsional vibration analysis and nonlinear feedback control of complex permanent magnet semidirect drive cutting system in coal cutters. Complexity (2019)

  29. Neimark, J.I.: Mathematical models in natural science and engineering. Springer, Berlin, Germany (2012)

    Google Scholar 

  30. Wan, Z., Cao, H., Zi, Y.: Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears. Mech. Mach. Theory 92, 447–463 (2015)

    Article  Google Scholar 

  31. Ren, J.J., Liu, Y.C., Wang, N.: Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer. ISA T. 54, 15–26 (2015)

    Article  Google Scholar 

  32. Evans, I.: Lateral spacing of point-attack picks. Int. J. Min. Eng. 22, 7–10 (1984)

    Google Scholar 

  33. Evans, I.: A theory of the cutting force for point-attack picks. Int. J. Rock Mech. Min. 2, 63–71 (1984)

    Google Scholar 

  34. Li, C.X.: Shearer. China Coal Industry Publishing House, Beijing (1998)

    Google Scholar 

  35. Ran, L., Xiang, D., Kirtley, J.L.: Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine. IEEE T. Ind. Appl. 47(3), 1498–1506 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51775543), the Key Research and Development Project of Xuzhou (Grant No. KC17014) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The mass matrix and total stiffness coefficient matrix of gear system:

$$ {\text{M}} = diag\left[ {\begin{array}{*{20}c} {m_{1} } & {m_{2} } & {m_{3} } & {m_{4} } & {m_{5} } & {m_{6} } & {m_{7} } & {m_{8} } & {J_{m} } & {J_{1} } & {J_{2} } & {J_{3} } & {J_{4} } & {J_{5} } & {J_{6} } & {J_{7} } & {J_{8} } & {J_{L} } \\ \end{array} } \right] $$
$$ {\text{K}}_{{\text{q}}} = \left[ {\begin{array}{*{20}c} {{\text{K}}_{{{\text{q}}1}} } & {{\text{K}}_{{{\text{q}}2}} } \\ {{\text{K}}_{{{\text{q}}3}} } & {{\text{K}}_{{{\text{q}}4}} } \\ \end{array} } \right] $$
$$ {\text{K}}_{{{\text{q}}1}} = \left[ {\begin{array}{*{20}c} {K_{1} + K_{12} } & { - K_{12} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ { - K_{12} } & {K_{2} + K_{12} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {K_{3} + K_{34} } & { - K_{34} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - K_{34} } & {K_{4} + K_{34} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {K_{5} + K_{56} } & { - K_{56} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & { - K_{56} } & {K_{6} + K_{56} + K_{67} } & { - K_{67} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & { - K_{67} } & {K_{7} + K_{67} + K_{78} } & { - K_{78} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - K_{78} } & {K_{8} + K_{78} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {K_{a} } \\ \end{array} } \right] $$
$$ {\text{K}}_{{{\text{q}}2}} = \left[ {\begin{array}{*{20}c} {K_{12} R_{1} } & { - K_{12} R_{2} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ { - K_{12} R_{1} } & {K_{12} R_{2} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {K_{34} R_{3} } & { - K_{34} R_{4} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - K_{34} R_{3} } & {K_{34} R_{4} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {K_{56} R_{5} } & { - K_{56} R_{6} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & { - K_{56} R_{5} } & {K_{56} R_{6} + K_{67} R_{6} } & { - K_{67} R_{7} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & { - K_{67} R_{6} } & {K_{67} R_{7} + K_{78} R_{7} } & { - K_{78} R_{8} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - K_{78} R_{7} } & {K_{78} R_{8} } & 0 \\ { - K_{a} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] $$
$$ {\text{K}}_{{{\text{q}}3}} = \left[ {\begin{array}{*{20}c} {K_{12} R_{1} } & { - K_{12} R_{1} } & 0 & 0 & 0 & 0 & 0 & 0 & { - K_{a} } \\ { - K_{12} R_{2} } & {K_{12} R_{2} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {K_{34} R_{3} } & { - K_{34} R_{3} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - K_{34} R_{4} } & {K_{34} R_{4} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {K_{56} R_{5} } & { - K_{56} R_{5} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & { - K_{56} R_{6} } & {K_{56} R_{6} + K_{67} R_{6} } & { - K_{67} R_{6} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & { - K_{67} R_{7} } & {K_{67} R_{7} + K_{78} R_{7} } & { - K_{78} R_{7} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - K_{78} R_{8} } & {K_{78} R_{8} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] $$
$$ K_{q4} = \left[ {\begin{array}{*{20}c} {K_{a} + K_{12} R_{1}^{2} } & { - K_{12} R_{1} R_{2} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ { - K_{12} R_{1} R_{2} } & {K_{b} + K_{12} R_{2}^{2} } & { - K_{b} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - K_{b} } & {K_{b} + K_{34} R_{3}^{2} } & { - K_{34} R_{3} R_{4} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - K_{34} R_{3} R_{4} } & {K_{c} + K_{34} R_{4}^{2} } & { - K_{c} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & { - K_{c} } & {K_{c} + K_{56} R_{5}^{2} } & { - K_{56} R_{5} R_{6} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & { - K_{56} R_{5} R_{6} } & {K_{56} R_{6}^{2} + K_{67} R_{6}^{2} } & { - K_{67} R_{6} R_{7} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {K_{67} R_{7}^{2} + K_{78} R_{8}^{2} } & { - K_{78} R_{7} R_{8} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - K_{78} R_{7} R_{8} } & {K_{d} + K_{78} R_{8}^{2} } & { - K_{d} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & { - K_{d} } & {K_{d} } \\ \end{array} } \right] $$

In some important simulation parameters, the gear meshing stiffness is the average meshing stiffness in the table:

Symbol

Value

Unit

Symbol

Value

Unit

K

20

 

C34

2.82e4

N·s/m·rad

K

50

 

C56

4.26e4

N·s/m·rad

Kpq

15

 

C67

5.44e4

N·s/m·rad

Kiq

20.75

 

C78

6.39e4

N·s/m·rad

Ka

1.10e6

N/m·rad

m1

6.51

kg

Kb

2.34e7

N/m·rad

m2

56.2

kg

Kc

2.85e7

N/m·rad

m3

13.02

kg

Kd

1.79e8

N/m·rad

m4

87.26

kg

Ca

4.43e2

N·s/m·rad

m5

27.74

kg

Cb

1.73e3

N·s/m·rad

m6/m7

60.50

kg

Cc

2.72e3

N·s/m·rad

m8

131.38

kg

Cd

5.64e3

N/m·rad

J1

0.024

kg m2

K12

2.78e9

N/m·rad

J2

0.82

kg m2

K34

2.87e9

N/m·rad

J3

0.089

kg m2

K56

3.68e9

N/m·rad

J4

2.034

kg m2

K67

4.02e9

N/m·rad

J5

0.26

kg m2

K78

4.18e9

N/m·rad

J6/J7

1.18

kg m2

C12

2.02e4

N·s/m·rad

J8

3.26

kg m2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Li, W., Wang, Y. et al. Study on electromechanical coupling torsional resonance characteristics of gear system driven by PMSM: a case on shearer semi-direct drive cutting transmission system. Nonlinear Dyn 104, 1205–1225 (2021). https://doi.org/10.1007/s11071-021-06364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06364-9

Keywords

Navigation