Skip to main content
Log in

Quadcopter nonsingular finite-time adaptive robust saturated command-filtered control system under the presence of uncertainties and input saturation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonsingular finite-time adaptive robust saturated command-filtered control problem for quadcopter unmanned aerial vehicles is investigated in this paper. Firstly, an adaptive robust command-filtered control, based on backstepping command-filtered and nonsingular fast terminal sliding mode control, is developed. Secondly, the parametric and nonparametric uncertainties are estimated by using a small number of adaptive laws. Also, a projector function is used to ensure the estimation of quadcopter parameters within an admissible set. Thirdly, error compensating signals are employed to tackle the undesirable effect of command filters. Finally, saturation compensator signals are developed to deal with the adverse effect of saturation in the system. The proposed control strategy can cope with the “explosion of complexity” and “singularity” problems. In addition, it can alleviate the chattering phenomenon and satisfy practical finite-time stability. The numerical simulation results and comparison display the effectiveness of the proposed technique over the other control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\phi ,\theta ,\psi \) :

Angles of roll, pitch, and heading in earth-fixed frame (EFF), respectively (rad)

pqr :

Rotational velocities of roll, pitch, and heading in body-fixed frame (BFF), respectively (\(\hbox {rad}\,\hbox {s}^{-1}\))

\(I_{x},I_{y},I_{z}\) :

Inertia moments of roll, pitch, and yaw, respectively (\(\hbox {kg}\,\hbox {m}^{2}\))

\(u_{\phi }, u_{\theta },u_{\psi }\) :

Aerodynamic moments of roll, pitch, and heading, respectively (\(\hbox {N} \,\hbox {m}\))

\(C_\mathrm{D}\) :

Drag coefficient (\(\hbox {kg}\,\hbox {m}^{2}\))

l :

Distance between the axis of the propeller and quadcopter center mass (m)

xyz :

Positions of longitudinal, lateral, and vertical in EFF, respectively (m)

\(u_{z}\) :

Lift force (N)

\(C_\mathrm{L}\) :

Lift coefficient (\(\hbox {kg}\,\hbox {m}\))

m :

Mass (kg)

g :

Gravity acceleration (\(\hbox {m}\,\hbox {s}^{-2}\))

\(\omega _{\underline{j}}\) :

Rotor speed, \(\underline{j} = \left\{ 1,2,3,4 \right\} \) (\(\hbox {rad}\,\hbox {s}^{-1}\))

References

  1. Eliker, K., Zhang, G., Grouni, S., Zhang, W.: An optimization problem for quadcopter reference flight trajectory generation. J. Adv. Transp. 2018, 6574183 (2018)

    Article  Google Scholar 

  2. Mohamed, A., Massey, K., Watkins, S., Clothier, R.: The attitude control of fixed-wing MAVS in turbulent environments. Prog. Aerosp. Sci. 66, 37–48 (2014)

    Article  Google Scholar 

  3. Gomez-Avila, J.: Adaptive PID controller using a multilayer perceptron trained with the extended Kalman filter for an unmanned aerial vehicle. In: Artificial Neural Networks for Engineering Applications, pp. 55–63 (2019). https://doi.org/10.1016/B978-0-12-818247-5.00014-9

  4. Hua, M.D., Hamel, T., Morin, P., Samson, C.: Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles. IEEE Control Syst. Mag. 33(1), 61–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Özbek, N.S., Önkol, M., Efe, M.Ö.: Feedback control strategies for quadrotor-type aerial robots: a survey. Trans. Inst. Meas. Control 38(5), 529–554 (2016)

    Article  Google Scholar 

  6. Emran, B.J., Najjaran, H.: A review of quadrotor: an underactuated mechanical system. Annu. Rev. Control 46, 165–180 (2018)

    Article  MathSciNet  Google Scholar 

  7. Mo, H., Farid, G.: Nonlinear and adaptive intelligent control techniques for quadrotor UAV—a survey. Asian J. Control 21(2), 989–1008 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mokhtari, A., Benallegue, A., Belaidi, A.: Polynomial linear quadratic Gaussian and sliding mode observer for a quadrotor unmanned aerial vehicle. J. Robot. Mechatron. 17(4), 483–495 (2005)

    Article  Google Scholar 

  9. Bouabdallah, S., Noth, A., Siegwart, R.: PID versus LQ control techniques applied to an indoor micro quadrotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2451–2456 (2004)

  10. Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  11. Gautam, D., Ha, C.: Control of a quadrotor using a smart self-tuning fuzzy PID controller. Int. J. Adv. Robot. Syst. 10(11), 380–389 (2013)

    Article  Google Scholar 

  12. Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: Direct method based control system for an autonomous quadrotor. J. Intell. Robot. Syst. 60(2), 285–316 (2010)

    Article  MATH  Google Scholar 

  13. Iskandarani, M., Givigi, S.N., Rabbath, C.A., Beaulieu, A.: Linear model predictive control for the encirclement of a target using a quadrotor aircraft. In: 21st Mediterranean Conference on Control and Automation, pp. 1550–1556 (2013)

  14. Takahashi, M.D.: Synthesis and evaluation of an H2 control law for a hovering helicopter. J. Guid. Control Dyn. 16(3), 579–584 (1993)

    Article  Google Scholar 

  15. Luo, C.C., Liu, R.F., Yang, C.D., Chang, Y.H.: Helicopter \(H_\infty \) control design with robust flying quality. Aerosp. Sci. Technol. 7(2), 159–169 (2003)

    Article  MATH  Google Scholar 

  16. Prempain, E., Postlethwaite, I.: Static \(H_\infty \) loop shaping control of a fly-by-wire helicopter. Automatica 41(9), 1517–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Araar, O., Aouf, N.: Full linear control of a quadrotor UAV, LQ versus \(H\infty \). In: UKACC International Conference on Control (CONTROL), pp. 133–138 (2014)

  18. Slotine, J.J.E., Li, W.: Applied Nonlinear Control, vol. 199. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  19. Mian, A.A., Wang, D.B.: Dynamic modeling and nonlinear control strategy for an underactuated quad rotor rotorcraft. J. Zhejiang Univ. Sci. A 9(4), 539–545 (2008)

    Article  MATH  Google Scholar 

  20. Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory Appl. 3(3), 303–314 (2009)

    Article  MathSciNet  Google Scholar 

  21. Madani, T., Benallegue, A., Backstepping control for a quadrotor helicopter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260 (2006)

  22. Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158 (2007)

  23. Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using Lagrange form dynamics. J. Intell. Robot. Syst. 56(1–2), 127–151 (2009)

    Article  MATH  Google Scholar 

  24. Huo, X., Huo, M., Karimi, H.R.: Attitude stabilization control of a quadrotor UAV by using backstepping approach. Math. Probl. Eng. 2014, 749803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eliker, K., Bouadi, H., Haddad, M.: Flight planning and guidance features for an UAV flight management computer. In: IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–6 (2016)

  26. Lee, B.Y., Yoo, D.W., Tahk, M.J.: Performance comparison of three different types of attitude control systems of the quad-rotor UAV to perform flip maneuver. Int. J. Aeronaut. Space Sci. 14(1), 58–66 (2013)

    Article  Google Scholar 

  27. Reinoso, M.J., Minchala, L.I., Ortiz, P., Astudillo, D.F., Verdugo, D.: Trajectory tracking of a quadrotor using sliding mode control. IEEE Latin Am. Trans. 14(5), 2157–2166 (2016)

    Article  Google Scholar 

  28. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear \(H_\infty \) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)

    Article  Google Scholar 

  30. Altan, A., Hacıoğlu, R.: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances. Mech. Syst. Signal Process. 138, 106548 (2020)

    Article  Google Scholar 

  31. Madani, T., Benallegue, A.: Backstepping sliding mode control applied to a miniature quadrotor flying robot. In: IECON 32nd Annual Conference on IEEE Industrial Electronics, pp. 700–705 (2006)

  32. Ramirez-Rodriguez, H., Parra-Vega, V., Sanchez, A., Garcia, O.: Integral sliding mode backstepping control of quadrotors for robust position tracking. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 423–432 (2013)

  33. Chen, F., Jiang, R., Zhang, K., Jiang, B., Tao, G.: Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 63(8), 5044–5056 (2016)

    Google Scholar 

  34. Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 68, 299–307 (2017)

    Article  Google Scholar 

  35. Palunko, I., Fierro, R.: Adaptive control of a quadrotor with dynamic changes in the center of gravity. IFAC Proc. Vol. 44(1), 2626–2631 (2011)

    Article  Google Scholar 

  36. Lee, D., Jin Kim, H., Sastry, S.: Feedback linearization versus adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7, 419–428 (2009)

    Article  Google Scholar 

  37. Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2D wind disturbances. J. Intell. Robot. Syst. 70, 51–63 (2013)

    Article  Google Scholar 

  38. Gong, X., Hou, Z.C., Zhao, C.J., Bai, Y., Tian, Y.T.: Adaptive backstepping sliding mode trajectory tracking control for a quad-rotor. Int. J. Autom. Comput. 9(5), 555–560 (2012)

    Article  Google Scholar 

  39. Ma, D., Xia, Y., Shen, G., Jia, Z., Li, T.: Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances. J. Frankl. Inst. 355(14), 6300–6322 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vahdanipour, M., Khodabandeh, M.: Adaptive fractional order sliding mode control for a quadrotor with a varying load. Aerosp. Sci. Technol. 86, 737–747 (2019)

    Article  Google Scholar 

  41. Mohammadi, M., Shahri, A.M.: Adaptive nonlinear stabilization control for a quadrotor UAV: theory, simulation and experimentation. J. Intell. Robot. Syst. 72(1), 105–122 (2013)

    Article  Google Scholar 

  42. Wang, R., Liu, J.: Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Frankl. Inst. 355(7), 3288–3309 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, H., Ye, X., Tian, Y., Zheng, G., Christov, N.: Model-free-based terminal SMC of quadrotor attitude and position. IEEE Trans. Aerosp. Electron. Syst. 52(5), 2519–2528 (2016)

    Article  Google Scholar 

  44. Modirrousta, A., Khodabandeh, M.: A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances. Aerosp. Sci. Technol. 45, 294–308 (2015)

    Article  Google Scholar 

  45. Labbadi, M., Cherkaoui, M.: Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 93, 105306 (2019)

    Article  Google Scholar 

  46. Wang, N., Deng, Q., Xie, G., Pan, X.: Hybrid finite-time trajectory tracking control of a quadrotor. ISA Trans. 90, 278–286 (2019)

    Article  Google Scholar 

  47. Hassani, H., Mansouri, A., Ahaitouf, A.: Robust autonomous flight for quadrotor UAV based on adaptive nonsingular fast terminal sliding mode control. Int. J. Dyn. Control (2020). https://doi.org/10.1007/s40435-20-00666-3

  48. Eliker, K., Zhang, W.: Finite-time adaptive integral backstepping fast terminal sliding mode control application on quadrotor UAV. Int. J. Control Autom. Syst. 18(2), 415–430 (2020)

    Article  Google Scholar 

  49. Eliker, K., Grouni, S., Tadjine, M., Zhang, W.: Practical finite time adaptive robust flight control system for quad-copter UAVs. Aerosp. Sci. Technol. 98, 105708 (2020)

    Article  Google Scholar 

  50. Mofid, O., Mobayen, S.: Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Trans. 72, 1–14 (2018)

    Article  Google Scholar 

  51. Huang, Y., Zheng, Z., Sun, L., Zhu, M.: Saturated adaptive sliding mode control for autonomous vessel landing of a quadrotor. IET Control Theory Appl. 12(13), 1830–1842 (2018)

    Article  MathSciNet  Google Scholar 

  52. Noordin, A., Basri, M.A.M., Mohamed, Z., Lazim, I.M.: Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization. Arab. J. Sci. Eng. 46, 1–19 (2020)

    Google Scholar 

  53. Kun, D.W., Hwang, I.: Linear matrix inequality-based nonlinear adaptive robust control of quadrotor. J. Guid. Control Dyn. 39, 996–1008 (2016)

    Article  Google Scholar 

  54. Altan, A., Aslan, Ö., Hacıoğlu, R.: Real-time control based on NARX neural network of hexarotor UAV with load transporting system for path tracking. In: 6th International Conference on Control Engineering and Information Technology (CEIT), pp. 1–6 (2018)

  55. Bouadi, H., Mora-Camino, F.: Modeling and adaptive flight control for quadrotor trajectory tracking. J. Aircr. 55(2), 666–681 (2018)

    Article  Google Scholar 

  56. Hua, C., Chen, J., Guan, X.: Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance. J. Frankl. Inst. 355(14), 6323–6338 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. Huang, X., Yan, Y., Huang, Z.: Finite-time control of underactuated spacecraft hovering. Control Eng. Pract. 68, 46–62 (2017)

    Article  Google Scholar 

  58. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Li, C., Zhang, Y., Li, P.: Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests. Nonlinear Dyn. 89(2), 1259–1278 (2017)

    Article  Google Scholar 

  60. Aboudonia, A., El-Badawy, A., Rashad, R.: Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach. Nonlinear Dyn. 90(1), 581–597 (2017)

    Article  MATH  Google Scholar 

  61. Shao, X., Liu, J., Cao, H., Shen, C., Wang, H.: Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control 28(7), 2700–2719 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shao, X., Wang, L., Li, J., Liu, J.: High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties. Aerosp. Sci. Technol. 89, 288–298 (2019)

    Article  Google Scholar 

  63. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  64. Qian, C., Li, J.: Global finite-time stabilization by output feedback for planar systems without observable linearization. IEEE Trans. Autom. Control 50(6), 885–890 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang, G., Deng, Y., Zhang, W.: Robust neural path-following control for underactuated ships with the DVS obstacles avoidance guidance. Ocean Eng. 143, 198–208 (2017)

    Article  Google Scholar 

  66. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  67. Yu, J., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is partly supported by the National Science Foundation of China (61473183, U1509211, 61627810) and National Key R&D Program of China (2017YFE0128500). We would like to express our gratitude to ELIKER Bahij, OUELDKHERROUBI Zahia, and ZOUAD Nafissa for their support, comments, and helpful feedbacks for drafting this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliker, K., Grouni, S., Tadjine, M. et al. Quadcopter nonsingular finite-time adaptive robust saturated command-filtered control system under the presence of uncertainties and input saturation. Nonlinear Dyn 104, 1363–1387 (2021). https://doi.org/10.1007/s11071-021-06332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06332-3

Keywords

Navigation