Skip to main content
Log in

A nonlinear hybrid controller for swinging-up and stabilizing the rotary inverted pendulum

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new class nonlinear hybrid controller (NHC) for swinging-up and stabilizing the (under-actuated) rotary inverted pendulum system. First, the swing-up controller, which drives the pendulum up towards the desired upright position, is designed based on the feedback linearization and energy control methods. Then, the modified super-twisting sliding mode control is proposed based on the new sliding surface to stabilize both the fully-actuated (the rotary arm) and under-actuated (the pendulum) state variables. In the proposed NHC, around the upright position, the stabilization controller is applied, and in different circumstances aside from the upright position, the swing-up controller is used. We show that with the proposed NHC: (i) in the swing-up stage, the pendulum is able to reach the desired upright position; and (ii) in the stabilization stage, the closed-loop rotary inverted pendulum is asymptotically stable. We demonstrate the effectiveness of the proposed NHC through extensive experiments. In particular, (i) the faster swing-up under the similar control effort is obtained, compared with the existing fuzzy logic swing-up controller; (ii) the better stabilization control performance for the convergence of the angular positions of the rotary arm and pendulum is attained and the chattering is alleviated, compared with the existing sliding mode stabilization controllers; (iii) the better stabilization control accuracy with the faster convergence time and lower peak overshoot is accomplished, compared with the existing Fuzzy-LQR controller; and (iv) the good robustness against sudden external disturbances is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For the sake of readability, we denote \(f_{\theta } := f_{\theta } \big ( \alpha ,{\dot{\alpha }},{\dot{\theta }} \big ), g_{\theta } := g_{\theta }(\alpha )\).

  2. https://drive.google.com/file/d/1UhKIVLicHaclpRv3T7ZtWOj87ozG4s6c/view.

References

  1. Boubaker, O.: The inverted pendulum benchmark in nonlinear control theory: a survey. Int. J. Adv. Robot. Syst. 10(5), 233 (2013)

    Article  Google Scholar 

  2. Hamza, M.F., Yap, H.J., Choudhury, I.A., Isa, A.I., Zimit, A.Y., Kumbasar, T.: Current development on using rotary inverted pendulum as a benchmark for testing linear and nonlinear control algorithms. Mech. Syst. Signal Process. 116, 347–369 (2019)

    Article  Google Scholar 

  3. Lin, C.E., Sheu, Y.R.: A hybrid-control approach for pendulum-car control. IEEE Trans. Ind. Electron. 39(3), 208–214 (1992)

    Article  Google Scholar 

  4. Elsayed, B.A., Hassan, M.A., Mekhilef, S.: Fuzzy swinging-up with sliding mode control for third order cart-inverted pendulum system. Int. J. Control Autom. Syst. 13(1), 238–248 (2015)

    Article  Google Scholar 

  5. Susanto, E., Wibowo, A.S., Rachman, E.G.: Fuzzy swing up control and optimal state feedback stabilization for self-erecting inverted pendulum. IEEE Access 8, 6496–6504 (2020)

    Article  Google Scholar 

  6. Wang, Z., Chen, Y., Fang, N.: Minimum-time swing-up of a rotary inverted pendulum by iterative impulsive control. In: Proceedings of the American control conference (ACC), pp. 1335–1340 (2004)

  7. Yang, X., Zheng, X.: Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: theory and experiments. IEEE Trans. Ind. Electron. 65(9), 7229–7238 (2018)

    Article  Google Scholar 

  8. Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36(2), 287–295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matsuda, N., Izutsu, M., Ishikawa, J., Furuta, K., Astrom, K.J.: Swinging-up and stabilization control based on natural frequency for pendulum systems. In: Proceedings of the American Control Conference (ACC), pp. 5291–5296 (2009)

  10. Zhao, J., Spong, M.W.: Hybrid control for global stabilization of the cart-pendulum system. Automatica 37(12), 1941–1951 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aranda-Escolástico, E., Guinaldo, M., Gordillo, F., Dormido, S.: A novel approach to periodic event-triggered control: design and application to the inverted pendulum. ISA Trans. 65, 327–338 (2016)

    Article  Google Scholar 

  12. Wang, C., Liu, X., Shi, H., Xin, R., Xu, X.: Design and implementation of fractional PID controller for rotary inverted pendulum. In: Proceedings of the Chinese Control And Decision Conference (CCDC), pp. 6730–6735 (2018)

  13. Sarkar, T.T., Dewan, L., Mahanta, C.: Real time swing up and stabilization of rotary inverted pendulum system. In: Proceedings of the International Conference on Computational Performance Evaluation (ComPE), pp. 517–522 (2020)

  14. Silik, Y., Yaman, U.: Control of rotary inverted pendulum by using on-off type of cold gas thrusters. Actuators 9(4), 95 (2020)

    Article  Google Scholar 

  15. Zhang, L., Dixon, R.: Robust non-minimal state feedback control for a Furuta pendulum with parametric modelling errors. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3001811

    Article  Google Scholar 

  16. Quanser Inc.: Instructor Workbook—Inverted Pendulum Experiment for MATLAB\(^{\textregistered }\)/Simulink\({\textregistered }\) Users (2020)

  17. Huang, J., Zhang, T., Fan, Y., Sun, J.Q.: Control of rotary inverted pendulum using model-free backstepping technique. IEEE Access 7, 96965–96973 (2019)

    Article  Google Scholar 

  18. Fan, Y., Huang, J., Sun, J.Q.: Multi-objective optimal backstepping control design for the under-actuated rotary flexible link. In: Proceedings of the Chinese Automation Congress (CAC), pp. 2460–2465 (2019)

  19. Nekoo, S.R.: Digital implementation of a continuous-time nonlinear optimal controller: an experimental study with real-time computations. ISA Trans. 101, 346–357 (2020)

    Article  Google Scholar 

  20. Aranda-Escolástico, E., Guinaldo, M., Santos, M., Dormido, S.: Control of a chain pendulum: a fuzzy logic approach. Int. J. Comput. Intell. Syst. 9(2), 281–295 (2016)

    Article  Google Scholar 

  21. Bicakci, S.: On the implementation of fuzzy VMC for an under actuated system. IEEE Access 7, 163578–163588 (2019)

    Article  Google Scholar 

  22. Kim, J.B., Lim, H.K., Kim, C.M., Kim, M.S., Hong, Y.G., Han, Y.H.: Imitation reinforcement learning-based remote rotary inverted pendulum control in openflow network. IEEE Access 7, 36682–36690 (2019)

    Article  Google Scholar 

  23. Hazem, Z.B., Fotuhi, M.J., Bingül, Z.: Development of a Fuzzy-LQR and Fuzzy-LQG stability control for a double link rotary inverted pendulum. J. Frankl. Inst. 357(15), 10529–10556 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zabihifar, S.H., Yushchenko, A.S., Navvabi, H.: Robust control based on adaptive neural network for rotary inverted pendulum with oscillation compensation. Neural Comput. Appl. 32, 14667–14679 (2020)

    Article  Google Scholar 

  25. Chen, Y.F., Huang, A.C.: Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Nonlinear Dyn. 76(1), 95–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saleem, O., Mahmood-ul Hasan, K.: Robust stabilisation of rotary inverted pendulum using intelligently optimised nonlinear self-adaptive dual fractional-order PD controllers. Int. J. Syst. Sci. 50(7), 1399–1414 (2019)

    Article  MathSciNet  Google Scholar 

  27. Saleem, O., Mahmood-Ul-Hasan, K.: Indirect adaptive state-feedback control of rotary inverted pendulum using self-mutating hyperbolic-functions for online cost variation. IEEE Access 8, 91236–91247 (2020)

    Article  Google Scholar 

  28. Coban, R., Ata, B.: Decoupled sliding mode control of an inverted pendulum on a cart: An experimental study. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, pp. 993–997 (2017)

  29. Wadi, A., Lee, J.H., Romdhane, L.: Nonlinear sliding mode control of the Furuta pendulum. In: Proceedings of the International Symposium on Mechatronics and its Applications, pp. 1–5 (2018)

  30. Mehedi, I.M., Ansari, U., Bajodah, A.H., AL-Saggaf, U.M., Kada, B., Rawa, M.J.: Underactuated rotary inverted pendulum control using robust generalized dynamic inversion. J. Vib. Control. 26(23-24), 2210–2220 (2020)

  31. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer (2013)

  32. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer (2014)

  33. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moreno, J.A.: A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In: Proceedings of the International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6 (2009)

  35. Khalil, H.K.: Nonlinear Systems. Pearson (2001)

  36. Nijmeijer, H., Van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer (1990)

  37. Astrom, K.J., Aracil, J., Gordillo, F.: A family of smooth controllers for swinging up a pendulum. Automatica 44(7), 1841–1848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., Moreno, J.A.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 63(6), 3677–3685 (2016)

    Article  Google Scholar 

  39. Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum using pseudo-state feedback. Proc. Inst. Mech. Eng. 206(4), 263–269 (1992)

    Article  Google Scholar 

  40. Henmi, T., Deng, M., Inoue, A.: Swing-up control of a serial double inverted pendulum. Proceedings of the American Control Conference 5, 3992–3997 (2004)

    Google Scholar 

  41. Mason, P., Broucke, M., Piccoli, B.: Time optimal swing-up of the planar pendulum. IEEE Trans. Autom. Control 53(8), 1876–1886 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mobayen, S.: An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn. 82(1–2), 53–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mobayen, S.: An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dyn. 82(1–2), 599–610 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lochan, K., Singh, J., Roy, B., Subudhi, B.: Adaptive time-varying super-twisting global SMC for projective synchronisation of flexible manipulator. Nonlinear Dyn. 93(4), 2071–2088 (2018)

    Article  MATH  Google Scholar 

  45. Guo, J., Lu, R., Yao, D., Zhou, Q.: Implementation of the load frequency control by two approaches: variable gain super-twisting algorithm and super-twisting-like algorithm. Nonlinear Dyn. 93(3), 1073–1086 (2018)

    Article  MATH  Google Scholar 

  46. Jouila, A., Nouri, K.: An adaptive robust nonsingular fast terminal sliding mode controller based on wavelet neural network for a 2-DOF robotic arm. J. Frankl. Inst. (2020). https://doi.org/10.1016/j.jfranklin.2020.04.038

  47. Halbe, O., Oza, H.: Robust continuous finite-time control of a helicopter in turbulence. IEEE Control Syst. Lett. 5(1), 37–42 (2020)

    Article  MathSciNet  Google Scholar 

  48. Jiang, T., Lin, D., Song, T.: Novel integral sliding mode control for small-scale unmanned helicopters. J. Frankl. Inst. 356(5), 2668–2689 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jiang, T., Lin, D., Song, T.: Finite-time control for small-scale unmanned helicopter with disturbances. Nonlinear Dyn. 96(3), 1747–1763 (2019)

    Article  MATH  Google Scholar 

  50. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, J., Su, J., Li, S., Yu, X.: High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Ind. Inf. 10(1), 604–614 (2013)

    Article  Google Scholar 

  52. Lan, Q., Li, S., Yang, J.: Finite-time tracking control for a class of nonlinear systems with multiple mismatched disturbances. Int. J. Robust Nonlinear Control 30(10), 4095–4111 (2020)

    Article  MathSciNet  Google Scholar 

  53. Tobenkin, M.M., Manchester, I.R., Tedrake, R.: Invariant funnels around trajectories using sum-of-squares programming. IFAC Proc. 44(1), 9218–9223 (2011)

    Article  Google Scholar 

  54. Moore, J., Tedrake, R.: Adaptive control design for underactuated systems using sums-of-squares optimization. In: Proceedings of the American Control Conference (ACC), pp. 721–728 (2014)

  55. Shen, S., Tedrake, R.: Compositional verification of large-scale nonlinear systems via sums-of-squares optimization. In: Proceedings of the American Control Conference (ACC), pp. 4385–4392 (2018)

Download references

Acknowledgements

The authors are very grateful for the professional suggestions and comments from all reviewers, which have improved the quality of the paper.

Funding

This research was supported in part by the National Research Foundation of Korea Grant funded by the Ministry of Science and ICT (NRF-2017R1A5A1015311) and in part by Basic Science Research Program through the National Research Foundation of Korea Grant funded by the Ministry of Education (2020R1A6A1A03040570).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyondong Oh or Jun Moon.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.P., Oh, H., Kim, Y. et al. A nonlinear hybrid controller for swinging-up and stabilizing the rotary inverted pendulum. Nonlinear Dyn 104, 1117–1137 (2021). https://doi.org/10.1007/s11071-021-06317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06317-2

Keywords

Navigation