Skip to main content
Log in

Pseudo-random number generator based on a generalized conservative Sprott-A system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Pseudo-random number generator (PRNG) has been widely used in digital image encryption and secure communication. This paper reports a novel PRNG based on a generalized Sprott-A system that is conservative. To validate whether the system can produce high quality chaotic signals, we numerically investigate its conservative chaotic dynamics and the complexity based on the approximate entropy algorithm. In this PRNG, we first select an initial value as a key to generate conservative chaotic sequence, then a scrambling operation is introduced into the process to enhance the complexity of the sequence, which is quantified by the binary quantization method. The national institute of standards and technology statistical test suite is used to test the randomness of the scrambled sequence, and we also analyze its correlation, keyspace, key sensitivity, linear complexity, information entropy and histogram. The numerical results show that the binary random sequence produced by the PRNG algorithm has the advantages of the large keyspace, high sensitivity, and good randomness. Moreover, an improved finite precision period calculation (FPPC) algorithm is proposed to calculate the repetition rate of the sequence and further discuss the relationship between the repetition rate and fixed-point accuracy; the proposed FPPC algorithm can be used to set the fixed-point notation for the proposed PRNG and avoid the degradation of the chaotic system due to the data precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rotenberg, A.: A new pseudo-random number generator. J. ACM JACM 7(1), 75–77 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tausworthe, R.C.: Random numbers generated by linear recurrence modulo two. Math. Comput. 19(90), 201–209 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wikramaratna, R.S.: Theoretical and empirical convergence results for additive congruential random number generators. J. Comput. Appl. Math. 233(9), 2302–2311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Marsaglia, G., et al.: Evaluating Kolmogorov’s distribution. J. Stat. Softw. 8(14), 1–6 (2003)

    Google Scholar 

  5. Widynski, B.: Squares: a fast counter-based RNG (2020). arXiv preprint arXiv:2004.06278

  6. Murillo-Escobar, M.A., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)

    Article  MathSciNet  Google Scholar 

  7. Tisa, S., Villa, F., Giudice, A., Simmerle, G., Zappa, F.: High-speed quantum random number generation using CMOS photon counting detectors. IEEE J. Sel. Top. Quantum Electron. 21(3), 23–29 (2014)

    Article  Google Scholar 

  8. Elmanfaloty, R.A., Abou-Bakr, E.: Random property enhancement of a 1D chaotic PRNG with finite precision implementation. Chaos Solitons Fract. 118, 134–144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, X., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 70(2), 1589–1592 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hua, Z., Zhou, Y., Pun, C.M., Chen, C.L.P.: 2D Sine logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)

    Article  Google Scholar 

  11. Hemdan, A.M., Faragallah, O.S., Elshakankiry, O., Elmhalaway, A.: A fast hybrid image cryptosystem based on random generator and modified logistic map. Multimedia Tools Appl. 78(12), 16177–16193 (2019)

    Article  Google Scholar 

  12. Meranza-Castillón, M.O., Murillo-Escobar, M.A., López-Gutiérrez, R.M., Cruz-Hernández, C.: Pseudorandom number generator based on enhanced Hénon map and its implementation. AEU Int. J. Electron. Commun. 107, 239–251 (2019)

    Article  Google Scholar 

  13. Dastgheib, M.A., Farhang, M.: A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period. Nonlinear Dyn. 89(4), 2957–2966 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, L., Miao, S., Cheng, M., Gao, X.: A pseudorandom bit generator based on new multi-delayed Chebyshev map. Inf. Process. Lett. 116(11), 674–681 (2016)

    Article  Google Scholar 

  15. Sahari, M.L., Boukemara, I.: A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 94(1), 723–744 (2018)

    Article  Google Scholar 

  16. Mansingka, A.S., Zidan, M.A., Barakat, M.L., Radwan, A.G., Salama, K.N.: Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77 Gbits/s. Microelectron. J. 44(9), 744–752 (2013)

    Article  Google Scholar 

  17. Zhao, Y., Gao, C., Liu, J., Dong, S.: A self-perturbed pseudo-random sequence generator based on hyperchaos. Chaos Solitons Fract. X 4, 100023 (2019)

    Article  Google Scholar 

  18. Vidhya, R., Brindha, M., Gounden, N.A.: A secure image encryption algorithm based on a parametric switching chaotic system. Chin. J. Phys. 62, 26–42 (2019)

    Article  MathSciNet  Google Scholar 

  19. Farah, M.A.B., Guesmi, R., Kachouri, A., Samet, M.: A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt. Laser Technol. 121, 105777 (2020)

    Article  MATH  Google Scholar 

  20. Tsafack, N., Kengne, J., Abd-El-Atty, B., Iliyasu, A.M., Hirota, K., Abd-El-Latif, A.A.: Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf. Sci. 515, 191–217 (2020)

    Article  MATH  Google Scholar 

  21. Zhang, Y., Wang, X.: A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014)

    Article  Google Scholar 

  22. Wang, X., Feng, L., Zhao, H.: Fast image encryption algorithm based on parallel computing system. Inf. Sci. 486, 340–358 (2019)

    Article  MATH  Google Scholar 

  23. Wang, X., Gao, S.: Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. 539, 195–214 (2020)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Y., Wang, X.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 26, 10–20 (2015)

    Article  Google Scholar 

  25. Wang, X., Wang, Y., Wang, S., Zhang, Y., Wu, X.: A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption. Chin. Phys. B 27(11), 110502 (2018)

    Article  Google Scholar 

  26. Wang, S., Wang, C., Xu, C.: An image encryption algorithm based on a hidden attractor chaos system and the Knuth–Durstenfeld algorithm. Opt. Lasers Eng. 128, 105995 (2020)

    Article  Google Scholar 

  27. Wang, X., Gao, S.: Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Wang, X., Wang, X., Ma, B., Wang, C., Shi, Y.: An encrypted coverless information hiding method based on generative models. Inf. Sci. 553, 19–30 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Q.H., Zhang, H., Li, Z.H.: One-way hash function construction based on conservative chaotic systems. In: 2009 Fifth International Conference on Information Assurance and Security, vol. 2 pp. 402–405. IEEE (2009)

  30. Hong, Z., Xieting, L.: Generating chaotic secure sequences with desired statistical properties and high security. Int. J. Bifurc. Chaos 7(01), 205–213 (1997)

    Article  MATH  Google Scholar 

  31. Li, P., Li, Z., Fettinger, S., Mao, Y., Halang, W.A.: Application of chaos-based pseudo-random-bit generators in internet-based online payments. In: E-Service Intelligence, pp. 667–685. Springer (2007).

  32. Nepomuceno, E.G., Junior, H.M.R., Martins, S.A.M., Perc, M., Slavinec, M.: Interval computing periodic orbits of maps using a piecewise approach. Appl. Math. Comput. 336, 67–75 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Nepomuceno, E.G., Mendes, E.M.A.M.: On the analysis of pseudo-orbits of continuous chaotic nonlinear systems simulated using discretization schemes in a digital computer. Chaos Solitons Fract. 95, 21–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Flores-Vergara, A., García-Guerrero, E.E., Inzunza-González, E., López-Bonilla, O.R., Rodríguez-Orozco, E., Cárdenas-Valdez, J.R., Tlelo-Cuautle, E.: Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn. 96(1), 497–516 (2019)

    Article  MATH  Google Scholar 

  36. Tong, X., Cui, M.: Image encryption scheme based on 3D baker with dynamical compound chaotic sequence cipher generator. Signal Process. 89(4), 480 (2009)

    Article  MATH  Google Scholar 

  37. Cang, S., Li, Y., Kang, Z., Wang, Z.: Generating multicluster conservative chaotic flows from a generalized Sprott-A system. Chaos Solitons Fract. 133, 109651 (2020)

    Article  MathSciNet  Google Scholar 

  38. Bassham, L.E., III., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., et al.: Sp 800–22 rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards & Technology, Gaithersburg (2010)

    Book  Google Scholar 

  39. Cang, S., Wu, A., Wang, Z., Chen, Z.: Distinguishing Lorenz and Chen systems based upon Hamiltonian energy theory. Int. J. Bifurc. Chaos 27(02), 1750024 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of information’’. Probl. Peredachi Inf. 1(1), 3–11 (1965)

    MathSciNet  MATH  Google Scholar 

  41. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  42. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Su, Z., Lian, S., Zhang, G., Jiang, J.: Chaos-based video encryption algorithms. In: Chaos-Based Cryptography, pp. 205–226. Springer (2011)

  44. Singh, S., Mandoria, H.L.: A review on image encryption technique and to extract feature fromimage. Int. J. Comput. Appl. 163, 1 (2017)

    Google Scholar 

  45. Francois, M., Grosges, T., Barchiesi, D., Erra, R.: A new pseudo-random number generator based on two chaotic maps. Informatica 24(2), 181–197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Van Tilborg, H.C.A., Jajodia, S.: Encyclopedia of Cryptography and Security. Springer, Berlin (2014)

    MATH  Google Scholar 

  47. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  48. Persohn, K.J., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fract. 45(3), 238–245 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grant No. 61873186), South African National Research Foundation (Grant Nos. 112142 and 112108), South African National Research Foundation Incentive Grant (No. 114911), and South African Eskom Tertiary Education Support Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Cang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cang, S., Kang, Z. & Wang, Z. Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear Dyn 104, 827–844 (2021). https://doi.org/10.1007/s11071-021-06310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06310-9

Keywords

Navigation