Skip to main content
Log in

An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quasi-zero stiffness (QZS) isolators can achieve superior performance in vibration isolation; however, this superiority is often effective only for an excitation with the small excitation amplitude due to the narrow QZS region around the static equilibrium positions. A QZS isolator with multi-pairs of oblique springs can increase the QZS region, but its isolation frequency band is still narrow owing to the large static deflection. This article presents an improved isolator with two pairs of oblique springs by setting an initial position to be located between the supporting points of the upper pair of oblique springs and the equilibrium position so that the static deflection is significantly decreased, and thus, the isolation frequency band can be considerably increased. New formulations of stiffness and displacement transmissibility are derived for the improved QZS isolator. A prototype is designed, fabricated and tested to verify benefits of the present QZS isolator for vibration mitigation. Numerical results of the present isolator predicted by experiment and theory are compared with those of the corresponding linear isolator and previous QZS isolator to show advantages of the innovated design for vibration isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

  2. Lu, Z., Wang, Z.X., Zhou, Y., Lu, X.L.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)

    Article  Google Scholar 

  3. Balaji, P.S., SelvaKumar, K.K.: Applications of nonlinearity in passive vibration control: a review. J. Vib. Eng. Technol. 9, 183–213 (2021)

  4. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020)

  5. Sonfack Bouna, H., Nana Nbendjo, B.R., Woafo, P.: Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation. Nonlinear Dyn. 100, 1125–1141 (2020)

    Article  Google Scholar 

  6. Zhu, G.N., Liu, J.Y., Cao, Q.J., Cheng, Y.F., Lu, Z.C., Zhu, Z.B.: A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Sci. China Technol. Sci. 63(3), 496–505 (2020)

    Article  Google Scholar 

  7. Dai, W., Yang, J., Shi, B.Y.: Vibration transmission and power flow in impact oscillators with linear and nonlinear constraints. Int. J. Mech. Sci. 168, 105234 (2020)

    Article  Google Scholar 

  8. Xu, Z.D., Chen, Z.H., Huang, X.H., Zhou, C.Y., Hu, Z.W., Yang, Q.H., Gai, P.P.: Recent advances in multi-dimensional vibration mitigation materials and devices. Front. Mater. 6, 143 (2019)

    Article  Google Scholar 

  9. Zhang, Q.L., Xia, S.Y., Xu, D.L., Peng, Z.K.: A torsion–translational vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 99(2), 1467–1488 (2019)

    Article  Google Scholar 

  10. Wang, K., Zhou, J.X., Xu, D.L., Ouyang, H.J.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Process. 124, 664–678 (2019)

    Article  Google Scholar 

  11. Sun, X.T., Wang, F., Xu, J.: Analysis, design and experiment of continuous isolation structure with local quasi-zero-stiffness property by magnetic interaction. Int. J. Nonlinear Mech. 116, 289–301 (2019)

    Article  Google Scholar 

  12. Sun, X.T., Jing, X.J.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62–63, 149–163 (2015)

    Article  Google Scholar 

  13. Yasuda, H., Miyazawa, Y., Charalampidis, E.G., Chong, C., Kevrekidis, P.G., Yang, J.: Origami-based impact mitigation via rarefaction solitary wave creation. Sci. Adv. 5(5), eaau2835 (2019)

    Article  Google Scholar 

  14. Ye, K., Ji, J.C., Brown, T.: Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 471, 115198 (2020)

    Article  Google Scholar 

  15. Li, M., Cheng, W., Xie, R.: Design and experiments of a quasi–zero-stiffness isolator with a noncircular cam-based negative-stiffness mechanism. J. Vib. Control 26, 1935–1947 (2020)

  16. Wang, Q., Zhou, J.X., Xu, D.L., Ouyang, H.J.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal Process. 139, 106633 (2020)

    Article  Google Scholar 

  17. Oyelade, A.O.: Experiment study on nonlinear oscillator containing magnetic spring with negative stiffness. Int. J. Nonlinear Mech. 120, 103396 (2020)

    Article  Google Scholar 

  18. Sun, Y., Zhao, J.L., Wang, M., Sun, Y., Pu, H.Y., Luo, J., Peng, Y., Xie, S.R., Yang, Y.: High-static–low-dynamic stiffness isolator with tunable electromagnetic mechanism. IEEE-ASME Trans. Mechatron. 25(1), 316–326 (2020)

    Article  Google Scholar 

  19. Wang, X.J., Liu, H., Chen, Y.Q., Gao, P.: Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis. Int. J. Mech. Sci. 142, 235–244 (2018)

    Article  Google Scholar 

  20. Liu, C.R., Yu, K.P.: A high-static-low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn. 94(3), 1549–1567 (2018)

    Article  Google Scholar 

  21. Liu, X.T., Zhao, Q., Zhang, Z.Y., Zhou, X.B.: An experiment investigation on the effect of Coulomb friction on the displacement transmissibility of a quasi-zero stiffness isolator. J. Mech. Sci. Technol. 33(1), 121–127 (2019)

    Article  Google Scholar 

  22. Bian, J., Jing, X.J.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019)

    Article  Google Scholar 

  23. Wang, Y., Jing, X.J.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Article  Google Scholar 

  24. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Article  Google Scholar 

  25. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Article  Google Scholar 

  26. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)

    Article  Google Scholar 

  27. Liu, C.R., Yu, K.P.: Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 100, 2141–2165 (2020)

  28. Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014)

    Article  Google Scholar 

  29. Fulcher, B.A., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136(3), 031009 (2014)

    Article  Google Scholar 

  30. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99(3), 1823–1839 (2019)

    Article  Google Scholar 

  31. Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J.: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. J. Appl. Phys. 121(4), 044902 (2017)

    Article  Google Scholar 

  32. Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control 20(15), 2314–2325 (2014)

    Article  Google Scholar 

  33. Gatti, G.: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Commun. Nonlinear Sci. Numer. Simul. 83, 105143 (2020)

    Article  MathSciNet  Google Scholar 

  34. Yu, Y.H., Yao, G., Wu, Z.H.: Nonlinear primary responses of a bilateral supported X-shape vibration reduction structure. Mech. Syst. Signal Process. 140, 106679 (2020)

    Article  Google Scholar 

  35. Zhao, F., Ji, J.C., Ye, K., Luo, Q.T.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Process. 144, 106975 (2020)

    Article  Google Scholar 

  36. Zhou, Z.F., Gao, Y.Z., Sun, L.N., Dong, W., Du, Z.J.: A bistable mechanism with linear negative stiffness and large in-plane lateral stiffness: design, modeling and case studies. Mech. Sci. 11, 75–89 (2020)

    Article  Google Scholar 

  37. Cai, C.Q., Zhou, J.X., Wu, L.C., Wang, K., Xu, D.L., Ouyang, H.J.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020)

    Article  Google Scholar 

  38. Zhao, F., Ji, J.C., Ye, K., Luo, Q.T.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)

    Article  Google Scholar 

  39. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Program of Henan Municipal Education Commission (Grant Number 19A130003, 2019), the National Nature Science Foundation of China (Grant Number U1804141, 2018) and the key scientific and technological project of Henan Province (Grant Numbers 212102310451, 212102210364).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhao or Shuqian Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Ji, J., Luo, Q. et al. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dyn 104, 349–365 (2021). https://doi.org/10.1007/s11071-021-06296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06296-4

Keywords

Navigation