Skip to main content

Advertisement

Log in

Single-structured hybrid gas-magnetic bearing and its rotordynamic performance

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work proposes a novel hybrid gas-magnetic bearing (HGMB) which has single bearing structure. The gas bearing and the active magnetic bearing (AMB) share the same airgap, and the closed magnetic poles are taken as the bushing of the gas bearing. Controllable electromagnetic forces are applied to adjust system dynamic characteristics. Numerical results demonstrate better rotating accuracy, suppressed sub-synchronous vibration, lower energy consumption compared with rigid gas bearings and AMB, and less air friction losses than conventional HGMBs, indicating the suitability of the proposed bearing for cryogenic turbomachinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AMB:

Active magnetic bearing

AMD:

Active magnetic damper

C h :

Nominal airgap of the single-structured HGMB (m)

C g :

Nominal airgap of the rigid self-acting gas bearing (m)

FDM:

Finite difference method

FEM:

Finite element modeling

GFB:

Gas foil bearing

h min :

Minimum gas film thickness of the HGMB (m)

H :

Dimensionless gas film thickness (m)

HFMB:

Hybrid foil-magnetic bearing

HGMB:

Hybrid gas-magnetic bearing

Mode A:

Rigid gas bearing

Mode B:

Active magnetic bearing

Mode C:

Single-structured HGMB in aerodynamic mode

Mode D:

Single-structured HGMB in full hybrid mode

References

  1. Looser, A., Tuysuz, A., Zwyssig, C., Kolar, J.W.: Active magnetic damper for ultrahigh-speed permanent-magnet machines with gas bearings. IEEE Trans. Ind. Electron 64(4), 1 (2017)

    Article  Google Scholar 

  2. Kim, D., Zimbru, G.: Start-stop characteristics and thermal behavior of a large hybrid airfoil bearing for aero-propulsion applications. J. Eng. Gas Turb. Power 134(3), 1 (2012)

    Article  Google Scholar 

  3. DellaCorte, C.: Oil-Free shaft support system rotordynamics: past, present and future challenges and opportunities. Mech. Syst. Signal Pr. 29(5), 67–76 (2012)

    Article  Google Scholar 

  4. Heshmat, H., Chen, H.M., Walton, J.F.: On the performance of hybrid foil-magnetic bearings. J. Eng. Gas Turb. Power 122(1), 73–81 (2000)

    Article  Google Scholar 

  5. Kamel, M., Bauomy, H.: Nonlinear study of a rotor–AMB system under simultaneous primary-internal resonance. Appl Math Model 34(10), 2763–2777 (2010)

    Article  MathSciNet  Google Scholar 

  6. Huang, Z., Fang, J., Liu, X., Han, B.: Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines. IEEE Trans. Industr. Electron. 63(4), 2027–2035 (2016)

    Google Scholar 

  7. El-Shafei, A., Dimitri, A.S.: Controlling journal bearing instability using active magnetic bearings. J. Eng. Gas Turb. Power 132, 012502 (2007)

    Article  Google Scholar 

  8. Swanson, E.E., Heshmat, H.: Walton, II: Performance of a foil-magnetic hybrid bearing. J. Eng. Gas Turb. Power 124(2), 375–382 (2002). https://doi.org/10.1115/1.1417485

    Article  Google Scholar 

  9. Heshmat, H.: Hybrid foil-magnetic bearing. US 6353273B1 (1998).

  10. Nadjafi, R.H., Pedro, S., Calif: Hybrid foil/magnetic bearing. US 6135640A (2000).

  11. Foshage, G.K., Lovelace, E.C.: Integrated magnetic/foil bearing and methods for supporting a shaft journal using the same. US 20060208589A1 (2006).

  12. Lee, Y., Kim, C., Kim, S., Kim, H.: Airfoil-magnetic hybrid bearing and a control system thereof.

  13. Minh Nha, P., Ahn, H.-J.: Experimental optimization of a hybrid foil-magnetic bearing to support a flexible rotor. Mech. Syst. Signal. Pr. 46(2), 361–372 (2014). https://doi.org/10.1016/j.ymssp.2014.01.012

    Article  Google Scholar 

  14. Jang, H., Kim, J., Han, D., Jang, D., Ahn, H.: Improvement of high-speed stability of an aerostatic bearing-rotor system using an active magnetic bearing. Int. J. Precis. Eng. Man. 15(12), 2565–2572 (2014)

    Article  Google Scholar 

  15. Jeong, S., Lee, Y.: Vibration control of high-speed rotor supported by hybrid foil-magnetic bearing with sudden imbalance. J. Vib. Control 23(8), 1296–1308 (2017). https://doi.org/10.1177/1077546315592531

    Article  Google Scholar 

  16. Jeong, S., Jeon, D., Lee, Y.: Rigid mode vibration control and dynamic behavior of hybrid foil-magnetic bearing turbo blower. J. Eng. Gas Turb. Power 139(5), 1 (2017). https://doi.org/10.1115/1.4034920

    Article  Google Scholar 

  17. Jeong, S., Lee, Y.: Effects of eccentricity and vibration response on high-speed rigid rotor supported by hybrid foil-magnetic bearing. Arch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 203(6), 994–1006 (2015)

    Google Scholar 

  18. Yazdi, B.Z., Kim, D.: Rotordynamic performance of hybrid air foil bearings with regulated hydrostatic injection. J. Eng. for Gas Turb. Power 140(1), 1 (2017). https://doi.org/10.1115/1.4037667

    Article  Google Scholar 

  19. Basumatary, K., Kumar, G., Kalita, K., Kakoty, S.: Stability analysis of rigid rotors supported by gas foil bearings coupled with electromagnetic actuators. Inst. Mech. Eng. Part C J. Mech. Eng. Sci, Proc (2019). https://doi.org/10.1177/0954406219877903

    Book  Google Scholar 

  20. Liu, Q., Wang, L., Zhang, S., Wang, X., Yu, C., Lei, G.: Quantitative control of the zero-bias-current electromagnetic bearings for lower power consumption. Int. J. Appl. Electrom. (2019). https://doi.org/10.3233/JAE-180127

    Article  Google Scholar 

  21. Vaiana, N., Sessa, S., Rosati, L.: A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech. Syst. Signal Pr. 146, 106984 (2021). https://doi.org/10.1016/j.ymssp.2020.106984

    Article  Google Scholar 

  22. Zhang, W., Zhu, H.: Radial magnetic bearings: An overview. Results in Physics 7, 3756–3766 (2017). https://doi.org/10.1016/j.rinp.2017.08.043

    Article  Google Scholar 

  23. Yang, B., Geng, H., Sun, Y., Yu, L.: Dynamic characteristics of hybrid foil-magnetic bearings (HFMBs) concerning eccentricity effect. Int J Appl Electrom 52, 1 (2016)

    Google Scholar 

  24. Lund, J.W.: Calculation of stiffness and damping properties of gas bearings. J. Lubr. Technol. 90(4), 793–803 (1968). https://doi.org/10.1115/1.3601723

    Article  Google Scholar 

  25. Chen, S.T., Zhao, H.L., Bin, Ma., B. : Calculation of the critical speed and stability analysis of cryogenic turboexpanders with different structures. Plasma Sci. Technol. 14, 919 (2012). https://doi.org/10.1088/1009-0630/14/10/12

    Article  Google Scholar 

  26. Li, Y., Chen, X., Zhang, P., Zhou, J.: Dynamics modeling and modal experimental study of high speed motorized spindle. J. Mech. Sci. Technol. 31(3), 1049–1056 (2017). https://doi.org/10.1007/s12206-017-0203-4

    Article  Google Scholar 

  27. Li, Y., Lei, G., Sun, Y., Wang, L.: Effect of environmental pressure enhanced by a booster on the load capacity of the aerodynamic gas bearing of a turbo expander. Tribol. Int. 105, 77–84 (2017). https://doi.org/10.1016/j.triboint.2016.09.027

    Article  Google Scholar 

  28. Yu, L., Qi, S.M., Geng, H.P.: Coercible gas lubrication and elastic foil gas bearing technology. Science Press, New York (2011)

    Google Scholar 

  29. Liu, Q., Zhang, S., Li, Y., Lei, G., Wang, L.: Hybrid gas-magnetic bearings: An overview. Int. J. Appl. Electrom. 1, 1–26 (2021). https://doi.org/10.3233/JAE-201579

    Article  Google Scholar 

  30. Fiaschi, D., Innocenti, G., Manfrida, G., Maraschiello, F.: Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D. Appl. Therm. Eng. 99, 402–410 (2016). https://doi.org/10.1016/j.applthermaleng.2015.11.087

    Article  Google Scholar 

  31. Pierart, F.G., Santos, I.F.: Adjustable hybrid gas bearing – Influence of piezoelectrically adjusted injection on damping factors and natural frequencies of a flexible rotor operating under critical speeds. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 230(10), 1209–1220 (2016). https://doi.org/10.1177/1350650116630913

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports of the Program of the National Natural Science Foundation of China (No. 51836009) and research fund of State Key Laboratory of Technologies in Space Cryogenic Propellants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, L., Li, Y. et al. Single-structured hybrid gas-magnetic bearing and its rotordynamic performance. Nonlinear Dyn 104, 333–348 (2021). https://doi.org/10.1007/s11071-021-06295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06295-5

Keyword

Navigation