Skip to main content
Log in

Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Variable coefficients nonlinear evolution equations offer us with more real aspects in the inhomogeneities of media and nonuniformities of boundaries than their counter constant coefficients in some real-world problems. Under consideration is a nonlinear variable coefficients Schrödinger’s equation with spatio-temporal dispersion in the Kerr law media. We are aimed at constructing novel solutions to the equation under consideration. Bright and combined dark–bright optical solitons are successfully revealed with aid of the complex amplitude ansatz scheme. Using two test functions, two nonautonomous complex wave solutions in dark and bright optical solitons forms are successfully revealed. The effect of the variable coefficients on the reported results can be clearly seen on the 3-dimensional and contour graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Triki, H., Biswas, A.: Dark solitons for a generalized nonlinear Schrodinger equation with parabolic law and dual power nonlinearity. Math. Methods Appl. Sci. 34, 958–962 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang, L.H., Si, J.G.: New soliton and periodic solutions of (2 + 1)-dimensional nonlinear Schrodinger equation with dual power nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2747–2754 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas, A.: A pertubation of solitons due to power law nonlinearity. Chaos Soliton Fractals 12, 579–588 (2001)

    Article  MATH  Google Scholar 

  4. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose–Einstein condensates in standing waves: the cubic nonlinear Schrodinger equation with a periodic potential. Phys. Rev. Lett. 86(8), 1402–1405 (2001)

    Article  Google Scholar 

  5. Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86(11), 2353–2356 (2001)

    Article  Google Scholar 

  6. Nore, C., Brachet, M.E., Fauve, S.: Numerical study of hydrodynamics using the nonlinear Schrodinger equation. Phys. D 65, 154–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biswas, A.: Quasi-stationary optical solitons with non-Kerr law nonlinearity. Opt. Fiber Technol. 9, 224–229 (2003)

    Article  Google Scholar 

  8. Eslami, M., Mirzazadeh, M.: Topological 1-soliton of nonlinear Schrodinger equation with dual power nonlinearity in optical fibers. Eur. Phys. J. Plus 128, 141–147 (2013)

    Article  Google Scholar 

  9. Sneddon, I.N.: Elements of Partial Differential Equations, pp. 234–256. McGraw-Hill, New York (1957)

    MATH  Google Scholar 

  10. Carrier, G.F., Pearson, C.E.: Partial Differential Equations, Theory and Technique. Academic Press, Boston (1988)

    MATH  Google Scholar 

  11. Cannell, D.M., Green, G.: Mathematician and Physicist. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    Google Scholar 

  12. Akgul, A., Hashemi, M.S., Inc, M., Baleanu, D., Khan, H.: New method for investigating the density-dependent diffusion Nagumo equation. Therm. Sci. 22(1), 143–152 (2019)

    Google Scholar 

  13. Inc, M., Baleanu, D.: Optical solitons for the Kundu–Eckhaus equation with time dependent coefficient. Optik 159, 324–332 (2018)

    Article  Google Scholar 

  14. Abdelrahman, M.A.E., Hassan, S.Z., Inc, M.: The coupled nonlinear Schrödinger-type equations. Mod. Phys. Lett. B 34(06), 2050078 (2020)

    Article  Google Scholar 

  15. Yang, X.J., Feng, Y.Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korpinar, Z., Inc, M., Bayram, M., Hashemi, M.S.: New optical solitons for Biswas–Arshed equation with higher order dispersions and full nonlinearity. Optik 206, 163332 (2020)

    Article  Google Scholar 

  17. Korpinar, Z., Inc, M., Hınçal, E., Baleanu, D.: Residual power series algorithm for fractional cancer tumor models. Alex. Eng. J. 59(3), 1405–1412 (2020)

    Article  Google Scholar 

  18. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, New York (1996)

    MATH  Google Scholar 

  19. Cheney, W., Kincaid, D.: Numerical Mathematics and Computing. Brooks Cole, Monterey (1985)

    MATH  Google Scholar 

  20. Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments. Springer, New York (1998)

    Book  MATH  Google Scholar 

  21. Halmos, P.R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. American Mathematical Society-Chelsea Publications, Chelsea (1998)

    MATH  Google Scholar 

  22. Gohberg, I., Goldberg, S.: Basic Operator Theory. Birkhauser, Boston (2001)

    MATH  Google Scholar 

  23. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  24. Jackson, D.: Classical Electrodynamics. Wiley, New York (1975)

    MATH  Google Scholar 

  25. Murray, J.D.: Mathematical Biology. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  26. Pinkus, A., Zafrani, S.: Fourier Series and Integral Transforms. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  27. John, F.: Partial Differential Equations. Applied Mathematical Sciences, 4th edn. Springer, Berlin (1991)

    Google Scholar 

  28. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations, Corrected Reprint of the 1967 Original. Springer, New York (1984)

    Google Scholar 

  29. Schatzman, M.: Numerical Analysis—A Mathematical Introduction. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  30. Smith, G.D.: Numerical Solutions of Partial Differential Equations, Finite Difference Methods. Oxford University Press, New York (1985)

    Google Scholar 

  31. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial Value Problems, 2nd edn. Robert E. Krieger, Malabar (1994)

    MATH  Google Scholar 

  32. Hasegawa, A., Matsumoto, M., Kattan, P.I.: Optical Solitons in Fibers. Springer, New York (2000)

    Google Scholar 

  33. Brandt-Pearce, M., Jacobs, I., Shaw, J.K.: Optimal input Gaussian pulse width for transmission in dispersive nonlinear fiber. J. Opt. Soc. Am. B 16, 1189–1196 (1999)

    Article  Google Scholar 

  34. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2007)

    MATH  Google Scholar 

  35. Kodama, Y., Wabnitz, S.: Analytical theory of guiding center nonreturn to zero and return to zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291–2293 (1995)

    Article  Google Scholar 

  36. Surjan, P.R., Angyan, J.: Perturbation theory for nonlinear time-independent Schrödinger equations. Phys. Rev. A Phys. Rev. J. 28, 45–48 (1983)

    Article  Google Scholar 

  37. Peddanarappagari, K.V., BrandtPearce, M.: Volterra series transfer function of single-mode fibers. J. Lightwave Technol. 15, 2232–2241 (1997)

    Article  Google Scholar 

  38. Serkin, V.N., Hasegawa, Novel, A.: Soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  39. Cerda, S.C., Cavalcanti, S.B., Hickmann, J.M.: A variational approach of nonlinear dissipative pulse propagation. Eur. Phys. J. D 1, 313–316 (1998)

    Article  Google Scholar 

  40. Roy, S., Bhadra, S.K.: Solving soliton perturbation problems by introducing Rayleigh’s dissipation function. J. Lightwave Technol. 26, 2301–2322 (2008)

    Article  Google Scholar 

  41. Chang, Q., Jia, E., Suny, W.: Difference schemes for solving the generalized nonlinear Schrodinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  Google Scholar 

  42. Bosco, G., Carena, A., Curri, V., Gaudino, R., Poggiolini, P., Bendedetto, S.: Suppression of spurious tones induced by the split-step method in fiber systems simulation. IEEE Photonics Technol. Lett. 12, 49–489 (2000)

    Article  Google Scholar 

  43. Sinkin, V., Holzlohner, R., Zweck, J., Menyuk, C.R.: Optimization of the splitstep Fourier method in modeling optical-fiber communication systems. J. Lightwave Technol. 21, 61–68 (2003)

    Article  Google Scholar 

  44. Liu, X., Lee, B.: A fast method for nonlinear Schrodinger equation. IEEE Photonics Technol. Lett. 15, 1549–1551 (2003)

    Article  Google Scholar 

  45. Premaratne, M.: Numerical simulation of nonuniformly timesampled pulse propagation in nonlinear fiber. J. Lightwave Technol. 23, 2434–2442 (2005)

    Article  Google Scholar 

  46. Dabas, B., Kaushal, J., Rajput, M., Sinha, R.K.: Nonlinear pulse propagation in chalcogenide As\(_2\)Se\(_3\) glass photonic crystal fiber using RK4IP method. Appl. Opt. 50, 5803–5811 (2011)

    Article  Google Scholar 

  47. Pedersen, M.E.V., Ji, C., Chris, X., Rottwitt, K.: Transverse field dispersion in the generalized nonlinear Schrodinger equation: four wave mixing in a higher order mode fiber. 17 Nonlinear Schrödinger equation. J. Lightwave Technol. 31, 3425–3431 (2013)

    Article  Google Scholar 

  48. Deiterding, R., Glowinski, R., Oliver, H., Poole, S.: A reliable split-step Fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. Lightwave Technol. 31, 2008–2017 (2013)

    Article  Google Scholar 

  49. Syam, M., Jaradat, H.M., Alquran, M.: A study on the two-mode coupled modified Korteweg–deVries using the simplified bilinear and the trigonometric-function methods. Nonlinear Dyn. 90(2), 1363–1371 (2017)

    Article  Google Scholar 

  50. Jaradat, H.M., Syam, M., Alquran, M.: A two-mode coupled Korteweg–de Vries: multiple-soliton solutions and other exact solutions. Nonlinear Dyn. 90(1), 371–377 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Alquran, M., Jaradat, H.M., Syam, M.: A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg–de Vries–Burgers equation. Nonlinear Dyn. 91(3), 1619–1626 (2018)

    Article  Google Scholar 

  52. Alquran, M., Jaradat, I.: Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode Schrodinger with nonlinearity Kerr laws. Nonlinear Dyn. 96, 115–121 (2019)

    Article  MATH  Google Scholar 

  53. Inc, M., Aliyu, A.I., Yusuf, A.: Optical solitons to the nonlinear Shrödinger’s equation with spatio-temporal dispersion using complex amplitude ansatz. J. Mod. Opt. 64(21), 2273–2280 (2017)

    Article  Google Scholar 

  54. Peng, L.: Nonautonomous complex wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation with variable coefficients. Opt. Quantum Electron. 51, 168 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Alquran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, T.A., Yusuf, A. & Alquran, M. Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients. Nonlinear Dyn 104, 639–648 (2021). https://doi.org/10.1007/s11071-021-06284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06284-8

Keywords

Navigation