Skip to main content
Log in

Finite-time non-fragile boundary feedback control for a class of nonlinear parabolic systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the finite-time non-fragile boundary feedback control problem is investigated for a class of nonlinear parabolic systems, where both the multiplicative and additive controller gain variations are considered to describe the actuator parameter perturbation. Non-fragile boundary control strategies are designed with respect to two controller gain variations via collocated or non-collocated boundary measurement, respectively. In light of the finite-time stability and Lyapunov-based techniques, some sufficient conditions are presented in terms of linear matrix inequalities such that the resulting closed-loop system is well-posedness and practically finite-time stable. Finally, numerical examples are given to verify the effectiveness of the proposed design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Auriol, J., Di Meglio, F.: Minimum time control of heterodirectional linear coupled hyperbolic PDEs. Automatica 71, 300–307 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43(5), 678–682 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bhat, S.P., Bernstein, D.S.: Finite time stability of continuous autonomous systems. SIAM J Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  4. Curtain, R., Morris, K.: Transfer functions of distributed parameter systems: A tutorial. Automatica 45(5), 1101–1116 (2009)

    Article  MathSciNet  Google Scholar 

  5. Coron, J.M., Hu, L., Olive, G.: Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation. Automatica 84, 95–100 (2017)

    Article  MathSciNet  Google Scholar 

  6. Coron, J.M., Nguyen, H.M.: Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach. Arch. Ration. Mech. Anal. 225(3), 993–1023 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Song, G.F., Zheng, B.C., Li, T.: Finite-time synchronization of coupled reaction-diffusion neural systems via intermittent control. Automatica 109, 108564 (2019)

    Article  MathSciNet  Google Scholar 

  8. Curtain, R.F., Zwart, H.J.: An introduction to infinite-dimensional linear systems theory. Springer, New York (1995)

    Book  Google Scholar 

  9. Dorato, P., Non-fragile controller design: an overview, in: Proceedings of American Control Conference, Philadelphia, 1998, pp. 2829-2831

  10. El-Farra, N.H., Lou, Y., Christofides, P.D.: Fault-tolerant control of fluid dynamic systems via coordinated feedback and switching. Comp. Chem. Eng. 27(12), 1913–1924 (2003)

    Article  Google Scholar 

  11. Espitia, N., Polyakov, A., Efimov, D., Perruquetti, W.: On continuous boundary time-varying feedbacks for fixed-time stabilization of coupled reaction-diffusion systems. In: 57th IEEE Conference on Decision and Control(CDC). Miami, pp. 3740–3745. FL, USA (2018)

  12. Espitia, N., Polyakov, A., Efimov, D., Perruquetti, W.: Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems. Automatica 103, 398–407 (2019)

    Article  MathSciNet  Google Scholar 

  13. Espitia, N., Polyakov, A., Efimov, D., Perruquetti, W.: Some characterizations of boundary time-varying feedbacks for fixed-time stabilization of reaction-diffusion systems. IFAC-PapersOnLine 52(2), 162–167 (2019)

    Article  MathSciNet  Google Scholar 

  14. Fridman, E., Orlov, Y.: An LMI approach to H\(_\infty \) boundary control of semilinear parabolic and hyperbolic systems. Automatica 45(9), 2060–2066 (2009)

    Article  MathSciNet  Google Scholar 

  15. Feng, H., Guo, B.Z.: New unknown input observer and output feedback stabilization for uncertain heat equation. Automatica 86, 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  16. Guan, Y., Yang, H., Jiang, B.: Fault-tolerant control for a class of switched parabolic systems. Nonlinear Anal. Hybrid Syst. 32, 214–227 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI Control Toolbox: For Use with MATLAB. The MathWorks, Natick (1995)

    Google Scholar 

  18. Galaktionov, V. A., V\(\acute{a}\)zquez, J. L., Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations, Arch. Rational Mech. Anal., 129(3), 225-244(1995)

  19. Ghaderi, N., Keyanpour, M., Mojallali, H.: Observer-based finite-time output feedback control of heat equation with Neumann boundary condition. J. Franklin Inst. 357(14), 9154–9173 (2020)

    Article  MathSciNet  Google Scholar 

  20. Guo, B.Z., Xu, C.: The stabilization of one-dimensional wave equation by boundary feedback with noncollocated observation. IEEE Trans. Autom. Control 52(2), 371–377 (2007)

    Article  MathSciNet  Google Scholar 

  21. Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24(4), 760–770 (1986)

    Article  MathSciNet  Google Scholar 

  22. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities, 2nd. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  23. Han, X.X., Wu, K.N., Ding, X.H.: Finite-time stabilization for stochastic reaction-diffusion systems with Markovian switching via boundary control. Appl. Math. Comput. 385, 125422 (2020)

    MathSciNet  Google Scholar 

  24. Krstic, M., Smyshlyaev, A., Boundary control of PDEs: A course on backstepping designs. Vol. 16. Siam, 2008

  25. Lopez-Ramirez, F., Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time observer design: Implicit lyapunov function approach. Automatica 87, 52–60 (2018)

    Article  MathSciNet  Google Scholar 

  26. Orlov, Y., Perez, L., Gomez, O., Autrique, L.: ISS output feedback synthesis of disturbed reaction-diffusion processes using non-collocated sampled-in-space sensing and actuation. Automatica 122, 109257 (2020)

    Article  MathSciNet  Google Scholar 

  27. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  28. Pisano, A., Orlov, Y., Usai, E.: Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques. SIAM J. Control Optim. 49(2), 363–382 (2011)

    Article  MathSciNet  Google Scholar 

  29. Pisano, A., Orlov, Y.: On the ISS properties of a class of parabolic DPS’ with discontinuous control using sampled-in-space sensing and actuation. Automatica 81, 447–454 (2017)

    Article  MathSciNet  Google Scholar 

  30. Polyakov, A., Coron, J.M., Rosier, L.: On boundary finite-time feedback control for heat equation. IFAC-PapersOnLine 50(1), 671–676 (2017)

    Article  Google Scholar 

  31. Polyakov, A., Coron, J.M., Rosier, L.: On homogeneous finite-time control for linear evolution equation in Hilbert space. IEEE Trans. Automat. Control 63(9), 3143–3150 (2018)

    Article  MathSciNet  Google Scholar 

  32. Perrollaz, V., Rosier, L.: Finite-time stabilization of 2\(\times \)2 hyperbolic systems on tree-shaped networks. SIAM J. Control Optim. 52(1), 143–163 (2014)

    Article  MathSciNet  Google Scholar 

  33. Salamon, D.: Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans. Amer. Math. Soc. 300(2), 383–431 (1987)

    MathSciNet  MATH  Google Scholar 

  34. Steeves, D., Krstic, M., Vazquez, R.: Prescribed-time \({{\rm H}}^{1}\)-stabilization of reaction-diffusion equations by means of output feedback, In 18th European Control Conference (ECC). Napoli. Italy 1932–1937, (2019)

  35. Steeves, D., Krstic, M., Vazquez, R.: Prescribed-time estimation and output regulation of the linearized Schrödinger equation by backstepping. Eur. J. Control 55, 3–13 (2020)

    Article  MathSciNet  Google Scholar 

  36. Song, Y.D., Wang, Y.J., Holloway, J., Krstic, M.: Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time. Automatica 83, 243–251 (2017)

    Article  MathSciNet  Google Scholar 

  37. Tucsnak, M., Weiss, G.: Observation and control for operator semigroups. Birkäuser Verlag AG, Basel (2009)

    Book  Google Scholar 

  38. Wang, J.W., Liu, Y.Q., Sun, C.Y.: Pointwise exponential stabilization of a linear parabolic PDE system using non-collocated pointwise observation. Automatica 93, 197–210 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wu, K.N., Sun, H.X., Shi, P., Lim, C.C.: Finite-time boundary stabilization of reaction-diffusion systems. Internat. J. Robust Nonlinear Control 28(5), 1641–1652 (2018)

  40. Wang, J.W., Wu, H.N., Sun, C.Y.: Local exponential stabilization via boundary feedback controllers for a class of unstable semi-linear parabolic distributed parameter processes. J. Franklin Inst. 354(13), 5221–5244 (2017)

    Article  MathSciNet  Google Scholar 

  41. Wang, Y.J., Song, Y.D., Krstic, M., Wen, C.Y.: Adaptive finite time coordinated consensus for high-order multi-agent systems: Adjustable fraction power feedback approach. Inf. Sci. 372, 392–406 (2016)

    Article  Google Scholar 

  42. Wu, K.N., Liu, X.Z., Yang, B.Q., et al.: Mean square finite-time synchronization of impulsive stochastic delay reaction-diffusion systems. Commun. Nonlinear Sci. Numer. Simul. 79, 104899 (2019)

    Article  MathSciNet  Google Scholar 

  43. Wang, J.L., Zhang, X.X., Wu, H.N., Huang, T.W., Wang, Q.: Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights. IEEE Trans. Cybern. 49(9), 3385–3397 (2018)

    Article  Google Scholar 

  44. Zhang, X.M., Wu, H.N.: H\(_{\infty }\) boundary control for a class of nonlinear stochastic parabolic distributed parameter systems. Internat. J. Robust Nonlinear Control 29(14), 4665–4680 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the National Natural Science Foundation of China (No. 61573013, 61603286). The authors gratefully acknowledge the helpful comments and suggestions of the associate editor and anonymous reviewers, which have improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Li.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Li, J. Finite-time non-fragile boundary feedback control for a class of nonlinear parabolic systems. Nonlinear Dyn 103, 2753–2768 (2021). https://doi.org/10.1007/s11071-021-06277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06277-7

Keywords

Navigation