Skip to main content
Log in

Neural network-based event-triggered fault detection for nonlinear Markov jump system with frequency specifications

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a neural network-based event-triggered fault detection scheme is addressed within the finite-frequency domain for a class of nonlinear Markov jump system. Initially, an approximation model based on multilayer neural network to alternate the nonlinear Markov jump system is constructed. For the purpose of saving the communication network bandwidth, a transmission mechanism based on the event-triggered strategy is subsequently applied in which each signal is transmitted depending on the designed condition rather than the sampling period. Further, two theorems with considering the signal frequency and the applied event-triggered mechanism are derived which guarantee the fault sensitivity as well as disturbance attenuation for the augment systems in certain frequency ranges. Then, the desired filters can be synthesized by the linear solvable conditions that are derived with the aid of the previous theorems and some novel decoupling techniques. Eventually, the proposed algorithm’s efficiency is shown by a presented computational example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou, S.W., Liu, X.P., Chen, B., Liu, H.X.: Stability analysis for a class of discrete-time nonhomogeneous Markov jump systems with multiplicative noises. Complexity 1, 1–9 (2018)

    MATH  Google Scholar 

  2. Xu, C., Tong, D.B., Chen, Q.Y., Zhou, W.N., Shi, P.: Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE transactions on systems, man, and cybernetics, early access article (2019)

  3. Kwon, N.K., Park, I.S., Park, P.G.: \(H_\infty \) state-feedback control for continuous-time Markovian jump fuzzy systems using a fuzzy weighting-dependent Lyapunov function. Nonlinear Dyn. 90, 2001–2011 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shen, H., Huo, S.C., Yan, H.C., Park, J.H., Sreeram, V.: Distributed dissipative state estimation for Markov jump genetic regulatory networks subject to round-robin scheduling. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 762–771 (2020)

    Article  MathSciNet  Google Scholar 

  5. Xu, N., Sun, L.K.: Synchronization control of Markov jump neural networks with mixed time-varying delay and parameter uncertain based on sample point controller. Nonlinear Dyn. 98, 1877–1890 (2019)

    Article  MATH  Google Scholar 

  6. Dong, S.L., Wu, Z.G., Su, H.Y., Shi, P., Karimi, H.R.: Asynchronous control of continuous-time nonlinear Markov jump systems subject to strict dissipativity. IEEE Trans. Autom. Control 64(3), 1250–1256 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu, Z.G., Dong, S.L., Shi, P., Su, H.Y., Huang, T.W., Lu, R.Q.: Fuzzy-model-based nonfragile guaranteed cost control of nonlinear Markov jump systems. IEEE Trans. Syst. Man Cybern. 47(8), 2388–2397 (2017)

    Article  Google Scholar 

  8. Zhong, X.N., He, H.B., Zhang, H.G., Wang, Z.S.: Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2141–2155 (2014)

    Article  Google Scholar 

  9. Zhang, J.F., Raissi, T., Li, S.C.: Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dyn. 97, 1495–1513 (2019)

    Article  MATH  Google Scholar 

  10. Yao, X.M., Wu, L.G., Guo, L.: Disturbance-observer-based fault tolerant control of high-speed trains: a Markovian jump system model approach. IEEE Trans. Syst. Man Cybern. 50(4), 1476–1485 (2020)

    Article  Google Scholar 

  11. Wang, Z.S., Liu, L., Li, T.S.: Minimum-learning-parameters-based adaptive neural fault tolerant control with its application to continuous stirred tank reactor. IEEE Trans. Syst. Man Cybern. 50(4), 1275–1285 (2020)

    Article  Google Scholar 

  12. Long, Y., Park, J.H., Ye, D.: Finite frequency fault detection for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures. Nonlinear Dyn. 96(1), 285–299 (2019)

    Article  MATH  Google Scholar 

  13. Jee, S.C., Lee, H.J., Joo, Y.H.: Sensor fault detection observer design for nonlinear systems in Takagi–Sugeno’s form. Nonlinear Dyn. 67, 2343–2351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Su, Q.Y., Fan, Z.X., Lu, T., Long, Y., Li, J.: Fault detection for switched systems with all modes unstable based on interval observer. Inf. Sci. 517, 167–182 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jiang, W.L., Dong, C.Y., Niu, E.Z., Wang, Q.: Observer-based robust fault detection filter design and optimization for networked control systems. Hindawi Pub. Corp. Math. Prob. Eng. 2015, 1–11 (2015)

    MATH  Google Scholar 

  16. Wu, Y., Dong, J.X., Li, T.S.: Sensor fault estimation in finite-frequency domain for nonlinear time-delayed systems by T–S fuzzy model approach with local nonlinear models. Int. J. Syst. Sci. 50(11), 2226–2247 (2019)

    Article  MathSciNet  Google Scholar 

  17. Chibani, A., Chadli, M., Shi, P., Braiek, N.B.: Multi-objective \(H_{-}/H_{\infty }\) fault detection filter design for T–S fuzzy systems with finite frequency specifications. Int. Feder. Autom. Control 51(24), 1172–1178 (2018)

    Google Scholar 

  18. Wang, Z.H., Shi, P., Lim, C.C.: \(H_{-}/H_{\infty }\) fault detection observer in finite frequency domain for linear parameter-varying descriptor systems. Automatica 86, 38–45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, F.W., Hao, M., Yun, Q.S.: Fault detection of flight control system based on \(H_{\infty }/H_{-}\) nonlinear filter. In: IEEE 3rd information technology, networking. electronic and automation control conference 2334–2338, (2019)

  20. Park, J.H.: Recent advances in control problems of dynamical systems and networks, pp. 1–527. Springer, Korea (2020)

    Google Scholar 

  21. Cheng, I., Park, J.H., Karimi, H.R., Shen, H.: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans. Cybern. 48, 2232–2244 (2018)

    Article  Google Scholar 

  22. Yildirim, S.: A proposed hybrid neural network for position control of a walking robot. Nonlinear Dyn. 52, 207–215 (2008)

    Article  MATH  Google Scholar 

  23. Kim, D.W., Kim, N.H., Park, G.T.: ZMP based neural network inspired humanoid robot control. Nonlinear Dyn. 67, 793–806 (2012)

    Article  Google Scholar 

  24. Doukhi, O., Lee, D.J.: Neural network-based robust adaptive certainty equivalent controller for quadrotor UAV with unknown disturbances. Int. J. Control Autom. Syst. 17, 2365–2374 (2019)

    Article  Google Scholar 

  25. Tang, L., Li, D.: Time-varying barrier Lyapunov function based adaptive neural controller design for nonlinear pure-feedback systems with unknown hysteresis. Int. J. Control Autom. Syst. 17, 1642–1654 (2019)

    Article  Google Scholar 

  26. Han, H.G., Liu, H.X., Liu, Z., Qiao, J.F.: Fault detection of sludge bulking using a self-organizing type-2 fuzzy-neural-network. Control Eng. Pract. 90, 27–37 (2019)

    Article  Google Scholar 

  27. Mekki, H., Mellit, A., Salhi, H.: Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simul. Model. Pract. Theory 67, 1–13 (2016)

    Article  Google Scholar 

  28. Raj, N., Jagadanand, G., George, S.: Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network. Int. J. Electron. 105(4), 559–571 (2018)

    Article  Google Scholar 

  29. Iwasaki, T., Hara, S.: Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control 50(1), 41–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhai, D., Lu, A.Y., Li, J.H., Zhang, Q.L.: Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain. Int. J. Syst. Sci. 47(13), 3232–3257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, M., Wang, Z.H., Shen, Y.: Fault detection and isolation method based on \(H_{-}/H_{\infty }\) unknown input observer design in finite frequency domain. Asian J. Control 19(5), 1–14 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Rakkiyappan, R., Maheswari, K., Velmurugan, G., Park, J.H.: Event-triggered \(H_{\infty }\) state estimation for semi-Markov jumping discrete-time neural networks with quantization. Neural Netw. 105, 236–248 (2018)

    Article  MATH  Google Scholar 

  33. Li, J., Li, Z., Xu, Y., Gu, K., Bao, W., Xu, X.: Event-triggered non-fragile state estimation for discrete nonlinear Markov jump neural networks with sensor failures. Int. J. Control Autom. Syst. 17, 1131–1140 (2019)

    Article  Google Scholar 

  34. Shen, M.Q., Ye, D., Wang, Q.G.: Event-triggered \(H_{\infty }\) filtering of Markov jump systems with general transition probabilities. Inf. Sci. 418, 635–651 (2017)

    Article  MATH  Google Scholar 

  35. Su, X.H., Liu, Z., Lai, G.Y.: Event-triggered robust adaptive control for uncertain nonlinear systems preceded by actuator dead-zone. Nonlinear Dyn. 93, 219–231 (2018)

    Article  MATH  Google Scholar 

  36. Wang, J., Chen, M.S., Shen, H., Park, J.H., Wu, Z.G.: A Markov jump model approach to reliable event-triggered retarded dynamic output feedback \(H_{\infty }\) control for networked systems. Nonlinear Anal. Hybrid Syst. 26, 137–150 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiao, S.Y., Zhang, Y.J., Zhang, B.Y.: Event-triggered \(H_{\infty }\) filtering of Markov jump systems with general transition probabilities. Signal Process. 157, 161–169 (2019)

    Article  Google Scholar 

  38. Tong, D.B., Xu, C., Chen, Q.Y., Zhou, W.N.: Sliding mode control of a class of nonlinear systems. J. Franklin Inst. 357(3), 1560–1581 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, S., Ahn, C.K., Xiang, Z.G.: Sampled-data adaptive output feedback fuzzy stabilization for switched nonlinear systems with asynchronous switching. IEEE Trans. Fuzzy Syst. 27(1), 200–205 (2019)

    Article  Google Scholar 

  40. Zhang, Z.H., Wang, H.M., Huang, M.T.: Neural network-based event-triggered fault detection of discrete-time nonlinear uncertain systems. J. Franklin Inst. 357, 4887–4900 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tong, D.B., Xu, C., Chen, Q.Y., Zhou, W.N., Xu, Y.H.: Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dyn. 100(2), 1343–1358 (2020)

    Article  Google Scholar 

  42. Yue, D., Tian, E., Han, Q.L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ge, X.H., Han, Q.L., Ding, L., Wang, Y.L., Zhang, X.M.: Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques. IEEE Trans. Syst. Man Cybern. 50(9), 3112–3125 (2020)

    Article  Google Scholar 

  44. Ahn, C.K., Shi, P., Wu, L.G.: Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay. IEEE Trans. Cybern. 45(12), 2680–2692 (2015)

    Article  Google Scholar 

  45. Ahn, C.K., Wu, L.G., Shi, P.: Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica 69, 356–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Long, Y., Park, J.H., Ye, D.: A codesign methodology for constrained networked systems with frequency specifications. IEEE Trans. Control Syst. Technol. 28(5), 1988–1996 (2020)

    Article  Google Scholar 

  47. Li, X.J., Yang, G.H.: Fault detection in finite frequency domains for Takagi–Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybern. 44(8), 1446–1458 (2014)

    Article  Google Scholar 

  48. Long, Y., Park, J.H., Jung, H.Y., Yao, X.M., Hao, L.Y.: Frequency-dependent filtering for networked control systems with communication constrains. In: Proceedings of the 11th Asian control conference (ASCC), 2370–2375 (2017)

  49. Zhou, Z.H., Luan, X.L., Liu, F.: Finite-frequency fault detection based on derandomisation for Markov jump linear system. IET Control Theory Appl. 12(8), 1148–1155 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61773187, 51939001, 61976033) and Natural Science Foundation of Liaoning Province (Grant No. 2019-MS-150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QD., Long, Y., Park, J.H. et al. Neural network-based event-triggered fault detection for nonlinear Markov jump system with frequency specifications. Nonlinear Dyn 103, 2671–2687 (2021). https://doi.org/10.1007/s11071-021-06263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06263-z

Keywords

Navigation