Skip to main content
Log in

Nonlinear fluctuation behaviors of complex voter financial price dynamics on small-world network

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To simulate the price fluctuation dynamics of financial markets, a novel financial price model is developed by the voter dynamic system on the Watts-Strogtz small-world network and the random jump process. The voter system is a classical statistical physics system, which describes the dynamics of voters’ attitudes towards a certain topic in the mutual influence. The Watts-Strogtz small-world network is a special kind of complex networks, which can be used to study the transmission dynamics of different things in complex and real-world systems. The paper first attempts to use the voter dynamic system on the small-world network to reproduce the micro-mechanism of price fluctuations caused by the interaction among different investors in financial markets, where investors can potentially disseminate information and interact via additional long-distance contacts. Moreover, considering that external macro environments have the impact on price fluctuations in financial markets, this paper introduces the random jump process in the price model. The effectiveness of the proposed model can be verified by comparing price returns generated by the model with returns of several important stock indexes in terms of nonlinear fluctuation behaviors. First, some statistical behaviors of the fluctuation dynamics are explored, including distribution characteristics and autocorrelation. Moreover, based on the ensemble empirical mode decomposition method, multifractal behaviors and complexity behaviors of returns and the first three intrinsic mode functions are investigated. The empirical results show that the dynamical model can well simulate these nonlinear fluctuation behaviors of real markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Taylor, S.J.: Conjectured models for trends in financial prices, tests and forecasts. J. R. Stat. Soc., Ser. A, Stat. Soc. 143, 338–362 (1980)

    Article  MathSciNet  Google Scholar 

  3. Ilinski, K.: Physics of Finance: Gauge Modeling in Nonequilibrium Pricing. Wiley, New York (2001)

    Google Scholar 

  4. Zivot, E., Wang, J.H.: Modeling Financial Time Series with S-PLUS. Springer, New York (2006)

    MATH  Google Scholar 

  5. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460, 685–686 (2009)

    Article  Google Scholar 

  6. Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55, 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elliott, R.J., Siu, T.K., Fung, E.S.: Filtering a nonlinear stochastic volatility model. Nonlinear Dyn. 67, 1295–1313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, D.: Particle-scale modelling of financial price dynamics. Commun. Nonlinear Sci. Numer. Simul. 43, 282–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garofalo, F., Iudice, F.L., Napoletano, E.: Herding as a consensus problem. Nonlinear Dyn. 92(1), 25–32 (2018)

    Article  Google Scholar 

  10. Karasu, S., Altan, A., Sarac, Z., Hacioglu, R.: Prediction of Bitcoin prices with machine learning methods using time series data. In: Signal Processing and Communications Applications Conference IEEE (2018)

  11. Altan, A., Karasu, S.: The effect of kernel values in support vector machine to forecasting performance of financial time series and cognitive decision making. J. Cogn. Syst. 4(1), 17–21 (2019)

    Google Scholar 

  12. Altan, A., Karasu, S., Bekiros, S.: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques. Chaos, Solitons Fractals 126, 325–336 (2019)

    Article  MathSciNet  Google Scholar 

  13. Li, R., Wang, J.: Interacting price model and fluctuation behavior analysis from Lempel-Ziv complexity and multi-scale weighted-permutation entropy. Phys. Lett. A 380, 117–129 (2016)

    Article  MathSciNet  Google Scholar 

  14. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, London (1991)

    MATH  Google Scholar 

  15. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  16. Stauffer, D., Penna, T.J.P.: Crossover in the Cont–Bouchaud percolation model for market fluctuation. Physica A 256, 284–290 (1998)

    Article  Google Scholar 

  17. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  18. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin and London (1999)

    Book  MATH  Google Scholar 

  19. Stanley, H.E., Gabaix, X., Gopikrishnan, P., Plerou, V.: Economic fluctuations and statistical physics: the puzzle of large fluctuations. Nonlinear Dyn. 44, 329–340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krawiecki, A.: Microscopic spin model for the stock market with attractor bubbling and heterogeneous agents. Internat. J. Modern Phys. C 16, 549–559 (2005)

    Article  MATH  Google Scholar 

  21. Fang, W., Wang, J.: Statistical properties and multifractal behaviors of market returns by Ising dynamic system. Internat. J. Modern Phys. C 23, 1250023 (2012)

    Article  MATH  Google Scholar 

  22. Niu, H.L., Wang, J.: Volatility clustering and long memory of financial time series and financial price model. Digital Signal Process 23, 489–498 (2013)

    Article  MathSciNet  Google Scholar 

  23. Hong, W.J., Wang, J.: Multiscale behavior of financial time series model from Potts dynamic system. Nonlinear Dyn. 78, 1065–1077 (2014)

    Article  MathSciNet  Google Scholar 

  24. Yang, G., Wang, J., Deng, W.: Nonlinear analysis of volatility duration financial series model by stochastic interacting dynamic system. Nonlinear Dyn. 80, 701–713 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Wang, J.: Measuring the correlation complexity between return series by multiscale complex analysis on Potts dynamics. Nonlinear Dyn. 89(4), 2703–2721 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhang, W., Wang, J.: Nonlinear stochastic exclusion financial dynamics modeling and complexity behaviors. Nonlinear Dyn. 88, 921–935 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wang, G.C., Zheng, S.Z., Wang, J.: Nonlinear complexity and chaotic behaviors on finite-range stochastic epidemic financial dynamics. Int. J. Bifurc. Chaos 29, 1950083 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, D., Wang, J.: Complexity behaviours of agent-based financial dynamics by hetero-distance contact process. Nonlinear Dyn. 100, 3867–3886 (2020)

    Article  Google Scholar 

  29. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  30. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Eugene Stanley, H.: Econophysics: financial time series from a statistical physics point of view. Phys. A Stat. Mech. Appl. 279(1–4), 443–456 (2000)

    Article  Google Scholar 

  31. Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks, Pacific Grove (1998)

    MATH  Google Scholar 

  32. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  33. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  MATH  Google Scholar 

  35. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Complex Syst. Complex. 424, 175–308 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Boyer, D., Miramontes, O.: Interface motion and pinning in small world networks. Phys. Rev. E 67, 035102 (2003)

    Article  Google Scholar 

  38. Castellano, C., Vilone, D., Vespignani, A.: Incomplete ordering of the voter model on small-world networks. Europhys. Lett. 63, 153–158 (2003)

    Article  Google Scholar 

  39. Vilone, D., Castellano, C.: Solution of voter model dynamics on annealed small-world networks. Phys. Rev. E 69, 016109 (2004)

    Article  Google Scholar 

  40. Sood, V., Redner, S.: Voter model on heterogeneous graphs. Phys. Rev. Lett. 94, 178701 (2004)

    Article  Google Scholar 

  41. Suchecki, K., Eguíluz, V.M., San Miguel, M.: Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Phys. Rev. Lett. 72, 036132 (2005)

    Google Scholar 

  42. Schilling, R.L.: Financial modelling with jump processes. Publ. Am. Stat. Assoc. 101, 1315–1316 (2005)

    Google Scholar 

  43. Mandelbrot, B.B.: Fractals and Scaling in Finance. Springer, New York (1997)

    Book  MATH  Google Scholar 

  44. Cont, R., Bouchaud, J.P.: Herd behavior and aggregate fluctuations in financial markets. Macroecon. Dyn. 4, 170–196 (2000)

    Article  MATH  Google Scholar 

  45. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Financ. 1, 223–236 (2001)

    Article  MATH  Google Scholar 

  46. Mantegna, R.N., Stanley, H.E.: Scaling behaviour in the dynamics of an economic index. Nature 376, 46–49 (2002)

    Article  Google Scholar 

  47. Menezes, R., Ferreira, N.B., Mendes, D.: Co-movements and asymmetric volatility in the Portuguese and US stock markets. Nonlinear Dyn. 44, 359–366 (2006)

    Article  MATH  Google Scholar 

  48. Tavares, A.B., Curto, J.D., Tavares, G.N.: Modelling heavy tails and asymmetry using ARCH-type models with stable Paretian distributions. Nonlinear Dyn. 51, 231–243 (2008)

    Article  MATH  Google Scholar 

  49. Gabaix, X.: Power laws in economics and finance. Annu. Rev. Econ. 1, 255–593 (2009)

    Article  Google Scholar 

  50. Zhou, W.X.: The components of empirical multifractility in financial returns. Europhys. Lett. 88, 28004 (2009)

    Article  Google Scholar 

  51. Duarte, F.B., Machado, J.A.T., Duarte, G.M.: Dynamics of the Dow Jones and the NASDAQ stock indexes. Nonlinear Dyn. 61, 691–705 (2010)

    Article  MATH  Google Scholar 

  52. Tenreiro Machado, J.A., Duarte, F.B., Duarte, G.M.: Analysis of financial data series using fractional fourier transform and multidimensional scaling. Nonlinear Dyn. 65, 235–245 (2011)

    Article  Google Scholar 

  53. Kobeissi, Y.H.: Multifractal financial markets: An alternative approach to asset and risk management. Springer, London (2012)

    MATH  Google Scholar 

  54. Kwapień, J., Drożdż, S.: Physical approach to complex systems. Phys. Rep. 515, 115–226 (2012)

    Article  MathSciNet  Google Scholar 

  55. Yu, Y., Wang, J.: Lattice-oriented percolation system applied to volatility behavior of stock market. J. Appl. Stat. 39, 785–797 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tenreiro Machado, J.A.: Complex dynamics of financial indices. Nonlinear Dyn. 74, 287–296 (2013)

    Article  Google Scholar 

  57. Vargas, J.A.R., Grzeidak, E., Hemerly, E.M.: Robust adaptive synchronization of a hyperchaotic finance system. Nonlinear Dyn. 80, 239–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tenreiro Machado, J.A., Lopes, A.M.: Relative fractional dynamics of stock markets. Nonlinear Dyn. 86, 1613–1619 (2016)

    Article  MathSciNet  Google Scholar 

  59. Wang, H.Q., Wang, J., Wang, G.C.: Nonlinear continuous fluctuation intensity financial dynamics and complexity behavior. Chaos 28, 083122 (2018)

    Article  MathSciNet  Google Scholar 

  60. Wang, G.C., Zheng, S.Z., Wang, J.: Statistical and nonlinear analyses of return volatility dynamics on energy futures. Int. J. Mod. Phys. C 30, 1950084 (2019)

    Article  MathSciNet  Google Scholar 

  61. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)

    Article  MATH  Google Scholar 

  62. Lilliefors, H.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Publ. Am. Stat. Assoc. 62, 399–402 (1967)

    Article  Google Scholar 

  63. Anderson, T.W., Darling, D.A.: A test of goodness-of-fit. Publ. Am. Stat. Assoc. 49, 765–769 (1954)

    Article  MATH  Google Scholar 

  64. Jarque, C.M., Bera, A.K.: Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 6, 255–259 (1980)

    Article  MathSciNet  Google Scholar 

  65. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  66. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

  67. Sharma, G.K., Kumar, A., Jayakumar, T., Rao, B.P., Mariyappa, N.: Ensemble empirical mode decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels. Ultrasonics 57, 167–178 (2015)

    Article  Google Scholar 

  68. Grech, D., Pamula, G.: On the multifractal effects generated by monofractal signals. Physica A 392, 5845–586 (2013)

    Article  Google Scholar 

  69. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  70. Pincus, S.M.: Assessing serial irregularity and its implications for health. Ann. New York Acad. Sci. 954, 245–267 (2001)

    Article  Google Scholar 

  71. Chen, W.T., Wang, Z.Z., Xie, H., Yu, W.: Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabilit. Eng. Publ. IEEE Eng. Med. Biol. Soc. 15, 266–272 (2007)

    Article  Google Scholar 

  72. Chen, W.T., Zhuang, J., Yu, W.X., Wang, Z.Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009)

    Article  Google Scholar 

  73. Rostaghi, M., Azami, H.: Dispersion entropy: a measure for time-series analysis. IEEE Signal Process. Lett. 23, 610–614 (2016)

    Article  Google Scholar 

  74. Zheng, J., Pan, H., Cheng, J.: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Signal Process. 85, 746–759 (2017)

    Article  Google Scholar 

  75. Wu, S.D., Lin, S.G., Wang, C.C., Lee, K.Y.: Time series analysis using composite multiscale entropy. Entropy 15, 1069–84 (2013)

  76. Fouda, J.S.A.E.: The matching energy: a novel approach for measuring complexity in time series. Nonlinear Dyn. 86(3), 2049–2060 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Fundamental Research Funds for the Central Universities, China, Grant No. 2019YJS190.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guochao Wang, Shenzhou Zheng or Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zheng, S. & Wang, J. Nonlinear fluctuation behaviors of complex voter financial price dynamics on small-world network. Nonlinear Dyn 103, 2525–2545 (2021). https://doi.org/10.1007/s11071-021-06257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06257-x

Keywords

Navigation