Skip to main content
Log in

Simulating the joint impact of temporal and spatial memory indices via a novel analytical scheme

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The prime concern of this study is to simulate the joint effect for the presence of two fractional derivative parameters (memory indices) by providing a novel analytical solution scheme for the fractional initial value problems. Our goal has been fulfilled by extending the residual power series method into the two-dimensional time and space, with time and space endowed with fractional derivative orders \(\alpha \) and \(\gamma \), respectively (simply denoted by fractional \((\alpha ,\gamma )\)-space), by virtue of a new \((\alpha ,\gamma )\)-fractional power series representation (\((\alpha ,\gamma )\)-FPS). The necessary theoretical framework for the convergence and the error bound is also provided to enrich our analytical study. Among other main findings, it is deserved to mention that the fractional derivative parameters act like the homotopy parameters, in a topological sense, to generate a rapidly convergent series solution for the classical integer version of the problem under consideration, which promotes the idea that these parameters describe a remnant memory. The efficiency of the proposed approach is assessed by projecting the obtained solutions of several well-known (non)linear problems into lower-dimensional fractal space and/or into integer space and then comparing them with the corresponding results of the literature. Overall, the method shows a wide versatility and adequacy in dealing with such hybrid problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nigmatullin, R.R.: To the theoretical explanation of the “universal response”. Phys. Stat. Solidi B 123(2), 739–745 (1984). https://doi.org/10.1002/pssb.2221230241

  2. Rekhviashvili, S.S., Pskhu, A., Agarwal, P., Jain, S.: Application of the fractional oscillator model to describe damped vibrations. Turk. J. Phys. 43(3), 236–242 (2019). https://doi.org/10.3906/FIZ-1811-16

    Article  Google Scholar 

  3. Coussot, C., Kalyanam, S., Yapp, R., Insana, M.: Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 715–725 (2009). https://doi.org/10.1109/TUFFC.2009.1094

    Article  Google Scholar 

  4. Song, D.Y., Jiang, T.Q.: Study on the constitutive equation with fractional derivative for the viscoelastic fluids: modified Jeffreys model and its application. Rheol. Acta 37(5), 512–517 (1998). https://doi.org/10.1007/s003970050138

    Article  Google Scholar 

  5. Djordjevic, V.D., Jaric, J., Fabry, B., Fredberg, J.J., Stamenovic, D.: Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31(6), 692–699 (2003). https://doi.org/10.1114/1.1574026

    Article  Google Scholar 

  6. El-Sayed, A.A., Agarwal, P.: Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Math. Methods Appl. Sci. 42(11), 3978–3991 (2019). https://doi.org/10.1002/mma.5627

    Article  MathSciNet  MATH  Google Scholar 

  7. Agarwal, P., Ntouyas, S.K., Jain, S., Chand, M., Singh, G.: Fractional kinetic equations involving generalized \(k\)-Bessel function via Sumudu transform. Alex. Eng. J. 57(3), 1937–1942 (2018). https://doi.org/10.1016/j.aej.2017.03.046

    Article  Google Scholar 

  8. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54(3), 1763–1784 (2016). https://doi.org/10.1137/15M1031734

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015). https://doi.org/10.1016/j.jcp.2014.10.051

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn. 84(3), 1553–1567 (2016). https://doi.org/10.1007/s11071-015-2588-x

    Article  Google Scholar 

  11. Yang, Y., Chen, Y., Huang, Y., Wei, H.: Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 73(6), 1218–1232 (2017). https://doi.org/10.1016/j.camwa.2016.08.017

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, L., Ma, Y., Meng, Z.: Haar wavelet method for solving fractional partial differential equations numerically. Appl. Math. Comput. 227, 66–76 (2014). https://doi.org/10.1016/j.amc.2013.11.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Khalifa, A.K., Raslan, K.R., Alzubai, H.M.: A collocation method with cubic B-splines for solving the MRLW equation. J. Comput. Appl. Math. 212(2), 406–418 (2008). https://doi.org/10.1016/j.cam.2006.12.029

    Article  MathSciNet  MATH  Google Scholar 

  14. Daǧ, İ., Saka, B., Irk, D.: Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput. 159(2), 373–389 (2004). https://doi.org/10.1016/j.amc.2003.10.020

    Article  MathSciNet  MATH  Google Scholar 

  15. Islam, S.U., Haq, S., Ali, A.: A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math. 223(2), 997–1012 (2009). https://doi.org/10.1016/j.cam.2008.03.039

    Article  MathSciNet  MATH  Google Scholar 

  16. Rehman, M., Khan, R.A.: The Legendre wavelet method for solving fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4163–4173 (2011). https://doi.org/10.1016/j.cnsns.2011.01.014

    Article  MathSciNet  MATH  Google Scholar 

  17. Sakar, M.G., Uludag, F., Erdogan, F.: Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method. Appl. Math. Model. 40(13–14), 6639–6649 (2016). https://doi.org/10.1016/j.apm.2016.02.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, S.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004). https://doi.org/10.1016/S0096-3003(02)00790-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Vishal, K., Kumar, S., Das, S.: Application of homotopy analysis method for fractional Swift Hohenberg equation: revisited. Appl. Math. Model. 36(8), 3630–3637 (2012). https://doi.org/10.1016/j.apm.2011.10.001

    Article  MathSciNet  MATH  Google Scholar 

  20. He, J.-H.: A short remark on fractional variational iteration method. Phys. Lett. A 375(38), 3362–3364 (2011). https://doi.org/10.1016/j.physleta.2011.07.033

    Article  MathSciNet  MATH  Google Scholar 

  21. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488–494 (2006). https://doi.org/10.1016/j.amc.2005.11.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Alquran, M., Jaradat, I.: A novel scheme for solving Caputo time-fractional nonlinear equations: theory and application. Nonlinear Dyn. 91(4), 2389–2395 (2018). https://doi.org/10.1007/s11071-017-4019-7

    Article  MATH  Google Scholar 

  23. Jaradat, I., Al-Dolat, M., Al-Zoubi, K., Alquran, M.: Theory and applications of a more general form for fractional power series expansion. Chaos Solitons Fract. 108, 107–110 (2018). https://doi.org/10.1016/j.chaos.2018.01.039

    Article  MathSciNet  MATH  Google Scholar 

  24. Agarwal, P., Berdyshev, A., Karimov, E.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017). https://doi.org/10.1007/s00025-016-0620-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013). https://doi.org/10.1038/srep03431

    Article  Google Scholar 

  26. Wei, Y., Chen, Y., Cheng, S., Wang, Y.: A note on short memory principle of fractional calculus. Fract. Calc. Appl. Anal. 20(6), 159–172 (2017). https://doi.org/10.1515/fca-2017-0073

    Article  MathSciNet  MATH  Google Scholar 

  27. Eringen, A.C., Edelen, D.G.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972). https://doi.org/10.1016/0020-7225(72)90050-X

    Article  MATH  Google Scholar 

  29. Yousef, F., Alquran, M., Jaradat, I., Momani, S., Baleanu, D.: New fractional analytical study of three-dimensional evolution equation equipped with three memory indices. J. Comput. Nonlinear Dyn. 14(11), 111008 (2019). https://doi.org/10.1115/1.4044585

    Article  Google Scholar 

  30. Jaradat, I., Alquran, M., Yousef, F., Momani, S., Baleanu, D.: On \((2+1)\)-dimensional physical models endowed with decoupled spatial and temporal memory indices. Eur. Phys. J. Plus 134(7), 360 (2019). https://doi.org/10.1140/epjp/i2019-12769-8

    Article  Google Scholar 

  31. Jaradat, I., Alquran, M., Abdel-Muhsen, R.: An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers’ models with twofold Caputo derivatives ordering. Nonlinear Dyn. 93(4), 1911–1922 (2018). https://doi.org/10.1007/s11071-018-4297-8

    Article  MATH  Google Scholar 

  32. Jaradat, I., Alquran, M., Al-Khaled, K.: An analytical study of physical models with inherited temporal and spatial memory. Eur. Phys. J. Plus. 133, 162 (2018). https://doi.org/10.1140/epjp/i2018-12007-1

    Article  Google Scholar 

  33. Abu Arqub, O.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. 5(1), 31–52 (2013)

    Article  MathSciNet  Google Scholar 

  34. Wei, Y., Gao, Q., Liu, D.-Y., Wang, Y.: On the series representation of nabla discrete fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 69, 198–218 (2019). https://doi.org/10.1016/j.cnsns.2018.09.024

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei, Y., Chen, Y., Gao, Q., Wang, Y.: Infinite series representation of functions in fractional calculus. In: 2019 Chinese Automation Congress, pp. 1697–1702. Hangzhou, China (2019). https://doi.org/10.1109/CAC48633.2019.8997499

  36. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-hydrology. Academic Press, New York (2017)

    MATH  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  38. El-Ajou, A., Abu-Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015). https://doi.org/10.1016/j.jcp.2014.08.004

    Article  MathSciNet  MATH  Google Scholar 

  39. El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015). https://doi.org/10.1016/j.amc.2014.12.121

    Article  MathSciNet  MATH  Google Scholar 

  40. Alquran, M., Jaradat, H.M., Syam, M.I.: Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method. Nonlinear Dyn. 90(4), 2525–2529 (2017). https://doi.org/10.1007/s11071-017-3820-7

    Article  MathSciNet  MATH  Google Scholar 

  41. Bayrak, M.A., Demir, A.: A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 336, 215–230 (2018). https://doi.org/10.1016/j.amc.2018.04.032

    Article  MathSciNet  MATH  Google Scholar 

  42. El-Ajou, A., Abu Arqub, O., Al-Smadi, M.: A general form of the generalized Taylor’s formula with some applications. Appl. Math. Comput. 256, 851–859 (2015). https://doi.org/10.1016/j.amc.2015.01.034

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y., Kumar, A., Kumar, S., Baleanu, D., Yang, X.J.: Residual power series method for time-fractional Schrödinger equations. J. Nonlinear Sci. Appl. 9(11), 5821–5829 (2016). https://doi.org/10.22436/jnsa.009.11.10

    Article  MathSciNet  MATH  Google Scholar 

  44. Ravi-Kanth, A.S.V., Aruna, K.: Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations. Chaos Solitons Fract. 41, 2277–2281 (2009). https://doi.org/10.1016/j.chaos.2008.08.037

    Article  MATH  Google Scholar 

  45. Shah, R., Khan, H., Arif, M., Kumam, P.: Application of Laplace–Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 21(4), 335 (2019). https://doi.org/10.3390/e21040335

  46. Wazwaz, A.M.: An analytic study on the third-order dispersive partial differential equations. Appl. Math. Comput. 142, 511–520 (2003). https://doi.org/10.1016/S0096-3003(02)00336-3

    Article  MathSciNet  MATH  Google Scholar 

  47. Dehghan, M., Manafian, J., Saadatmandi, A.: The solution of the linear fractional partial differential equations using the homotopy analysis method. Z. Naturforsch. A 65, 935–945 (2010)

    Article  Google Scholar 

  48. Momani, S., Yildirim, A.: Analytical approximate solutions of the fractional convection–diffusion equation with nonlinear source term by He’s homotopy perturbation method. Int. J. Comput. Math. 87(5), 1057–1065 (2010). https://doi.org/10.1080/00207160903023581

    Article  MathSciNet  MATH  Google Scholar 

  49. Inc, M., Cherruault, Y.: A new approach to solve a diffusion–convection problem. Kybernetes 31(3–4), 536–549 (2002). https://doi.org/10.1108/03684920210422610

    Article  MathSciNet  MATH  Google Scholar 

  50. Fujita, Y.: Cauchy problems of fractional order and stable processes. Jpn. J. Appl. Math. 7, 459 (1990). https://doi.org/10.1007/BF03167854

    Article  MathSciNet  MATH  Google Scholar 

  51. Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4), 415–425 (2017). https://doi.org/10.1134/S106192081704001X

    Article  MathSciNet  MATH  Google Scholar 

  52. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015). https://doi.org/10.12785/pfda/010201

    Article  Google Scholar 

  53. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 1–7 (2016). https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Jaradat.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaradat, I., Alquran, M., Sivasundaram, S. et al. Simulating the joint impact of temporal and spatial memory indices via a novel analytical scheme. Nonlinear Dyn 103, 2509–2524 (2021). https://doi.org/10.1007/s11071-021-06252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06252-2

Keywords

Mathematics Subject Classification

Navigation