Skip to main content
Log in

Light-powered self-excited motion of a liquid crystal elastomer rotator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Self-excited motions have the advantages of directly harvesting energy from the environment, autonomy, and portability of the equipment, and consequently, the development of a wealth of new self-excited motion modes can greatly expand the application of active machines. In this paper, a rotator capable of self-excited movement is proposed, which consists of a liquid crystal elastomer (LCE) bar and a regular bar with an axle. Based on the dynamic LCE model, through theoretical modeling and numerical calculation, it is found that the LCE rotator has three motion modes, namely static mode, oscillation mode and rotation mode. The detailed dynamical process reveals the mechanism of self-excited oscillation and rotation. In this paper, the effects of parameters such as light intensity, damping coefficient, dimensionless gravitational acceleration, length ratio, illumination region and initial angular velocity on the self-excited oscillation and rotation are further studied systematically, and the corresponding limit cycles are given by various cases. The results show that the light intensity, damping coefficient and length ratio have important influence on the motion mode, while the initial angular velocity does not affect the motion mode. The influence of various parameters including light intensity and illumination region on the amplitude and frequency of self-excited oscillation is also studied. It is found that the amplitude mainly depends on light intensity and damping. This study can deepen people's understanding of non-equilibrium self-excited motions and provide promising applications in the fields of energy harvest, power generation, monitoring, soft robotics, medical devices and micro–nano-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li, M.H., Keller, P., Li, B., Wang, X., Brunet, M.: Light-driven side-on nematic elastomer actuators. Adv. Mater. 15, 569–572 (2003). https://doi.org/10.1002/adma.200304552

    Article  Google Scholar 

  2. Maeda, S., Hara, Y., Sakai, T., Yoshida, R., Hashimoto, S.: Self-walking gel. Adv. Mater. 19, 3480–3484 (2007). https://doi.org/10.1002/adma.200700625

    Article  Google Scholar 

  3. Serak, S., Tabiryan, N.V., Vergara, R., White, T.J., Vaia, R.A., Bunning, T.J.: Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6, 779–783 (2010). https://doi.org/10.1039/b916831a

    Article  Google Scholar 

  4. Jenkins, A.: Self-oscillation. Phys. Rep. 525, 167–222 (2013). https://doi.org/10.1016/j.physrep.2012.10.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Uchida, E., Azumi, R., Norikane, Y.: Light-induced crawling of crystals on a glass surface. Nat. Commun. 6, 7310 (2015). https://doi.org/10.1038/ncomms8310

    Article  Google Scholar 

  6. Kumar, K., Knie, C., Bleger, D., Peletier, M.A., Friedrich, H., Hecht, S., Broer, D.J., Debije, M.G., Schenning, A.P.: A chaotic self-oscillating sunlight-driven polymer actuator. Nat. Commun. 7, 11975 (2016). https://doi.org/10.1038/ncomms11975

    Article  Google Scholar 

  7. Wang, X., Tan, C.F., Chan, K.H., Lu, X., Zhu, L., Kim, S., Ho, G.W.: In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nat. Commun. 9, 3438 (2018). https://doi.org/10.1038/s41467-018-06011-9

    Article  Google Scholar 

  8. Nocentini, S., Parmeggiani, C., Martella, D., Wiersma, D.S.: Optically driven soft micro robotics. Adv. Opt. Mater. 6, 1800207 (2018). https://doi.org/10.1002/adom.201800207

    Article  Google Scholar 

  9. Ge, F., Yang, R., Tong, X., Camerel, F., Zhao, Y.: A multifunctional dyedoped liquid crystal polymer actuator: light-guided transportation, turning in locomotion, and autonomous motion. Angew. Chem. Int. Ed. 57, 11758–11763 (2018). https://doi.org/10.1002/ange.201807495

    Article  Google Scholar 

  10. Preston, D.J., Jiang, H.J., Sanchez, V., Rothemund, P., Rawson, J., Nemitz, M.P., Lee, W., Suo, Z., Walsh, C.J., Whitesides, G.M.: A soft ring oscillator. Sei. Robet. 4, eaaw5496 (2019). https://doi.org/10.1126/scirobotics.aaw5496

  11. Zeng, H., Lahikainen, M., Liu, L., Ahmed, Z., Wani, O.M., Wang, M., Priimagi, A.: Light-fuelled freestyle self-oscillators. Nat. Commun. 10(1), 1–9 (2019). https://doi.org/10.1038/s41467-019-13077-6

    Article  Google Scholar 

  12. Kinoshita, S. (2013) Introduction to nonequilibrium phenomena, pattern formations and oscillatory phenomena. https://doi.org/10.1016/B978-0-12-397014-5.00001-8

  13. Chakrabarti, A., Choi, G.P.T., Mahadevan, L.: Self-excited motions of volatile drops on swellable sheets. Phys. Rev. Lett. 124(25), 258002 (2020). https://doi.org/10.1103/PhysRevLett.124.258002

    Article  Google Scholar 

  14. Bartlett, N.W., Tolley, M.T., Overvelde, J.T., Weaver, J.C., Mosadegh, B., Bertoldi, K., Whitesides, G.M., Wood, R.J.: A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015). https://doi.org/10.1126/science.aab0129

    Article  Google Scholar 

  15. Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016). https://doi.org/10.1038/nature19100

    Article  Google Scholar 

  16. Liao, B., Zang, H., Chen, M., Wang, Y., Lang, X., Zhu, N., Yang, Z., Yi, Y.: Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robot (Aheadofprint) (2020). https://doi.org/10.1089/soro.2019.0070

    Article  Google Scholar 

  17. Chen, Y., Zhao, H., Mao, J., Chirarattananon, P., Helbling, F., Hyun, P.N., Clarke, D., Wood, R.: Controlled flight of a microrobot powered by soft artificialmuscles. Nature 575(7782), 324–329 (2019). https://doi.org/10.1038/s41586-019-1737-7

    Article  Google Scholar 

  18. Baumann, A., Sánchez-Ferrer, A., Jacomine, L., Martinoty, P., Houerou, V., Ziebert, F., Kulić, I.: Motorizing fibres with geometric zero-energymodes. Nat. Mater. 17(6), 523–527 (2018). https://doi.org/10.1038/s41563-018-0062-0

    Article  Google Scholar 

  19. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: A scalable pipeline for designing reconfigurable organisms. P. Natl. Acad. Sci. USA 117(4), 1853–1859 (2020). https://doi.org/10.1073/pnas.1910837117

    Article  Google Scholar 

  20. Hu, W., Lum, G.Z., Mastrangeli, M., Sitti, M.: Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018). https://doi.org/10.1038/nature25443

    Article  Google Scholar 

  21. Huang, H., Aida, T.: Towards molecular motors in unison. Nat. Nanotechnol. 14(5), 407–407 (2019). https://doi.org/10.1038/s41565-019-0414-1

    Article  Google Scholar 

  22. Sangwan, V., Taneja, A., Mukherjee, S.: Design of a robust self-excited biped walking mechanism. Mech. Mach. Theory. 39(12), 1385–1397 (2004). https://doi.org/10.1016/j.mechmachtheory.2004.05.023

    Article  MATH  Google Scholar 

  23. Chatterjee, S.: Self-excited oscillation under nonlinear feedback with time-delay. J. Sound Vib. 330(9), 1860–1876 (2011). https://doi.org/10.1016/j.jsv.2010.11.005

    Article  Google Scholar 

  24. Lu, X., Zhang, H., Fei, G., Yu, B., Tong, X., Xia, H., Zhao, Y.: Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv. Mater. 30(14), 1706597 (2018). https://doi.org/10.1002/adma.201706597

    Article  Google Scholar 

  25. Cheng, Y., Lu, H., Lee, X., Zeng, H., Priimagi, A.: Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 32(7), 1906233 (2019). https://doi.org/10.1002/adma.201906233

    Article  Google Scholar 

  26. Vantomme, G., Gelebart, A.H., Broer, D.J., Meijer, E.W.: A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron 73(33), 4963–4967 (2017). https://doi.org/10.1016/j.tet.2017.06.041

    Article  Google Scholar 

  27. Lahikainen, M., Zeng, H., Priimagi, A.: Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 9, 4148 (2018). https://doi.org/10.1038/s41467-018-06647-7

    Article  Google Scholar 

  28. Gelebart, A.H., Mulder, D.J., Varga, M., Konya, A., Vantomme, G., Meijer, E.W., Selinger, R.S., Broer, D.J.: Making waves in a photoactive polymer film. Nature 546(7660), 632–636 (2017). https://doi.org/10.1038/nature22987

    Article  Google Scholar 

  29. Boissonade, J., Kepper, P.D.: Multiple types of spatio-temporal oscillations induced by differential diffusion in the Landolt reaction. Phys. Chem. Chem. Phys. 13, 4132–4137 (2011). https://doi.org/10.1039/c0cp01653e

    Article  Google Scholar 

  30. Li, K., Wu, P.Y., Cai, S.Q.: Chemomechanical oscillations in a responsive gel induced by an autocatalytic reaction. J. Appl. Phys. 116(4), 043523 (2014). https://doi.org/10.1063/1.4891520

    Article  Google Scholar 

  31. Camacho, L.M., Finkelmann, H., Palffy, M.P., Shelley, M.: Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3(5), 307–310 (2004). https://doi.org/10.1038/nmat1118

    Article  Google Scholar 

  32. Lu, X., Guo, S., Tong, X., Xia, H., Zhao, Y.: Tunable photo controlled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv. Mater. 29(28), 1606467 (2017). https://doi.org/10.1002/adma.201606467

    Article  Google Scholar 

  33. White, T., Tabiryan, N., Serak, S., Hrozhyk, U., Tondiglia, V., Koerner, H., Vaia, R., Bunning, T.: A high frequency photodriven polymer oscillator. Soft Matter. 4(9), 1796–1798 (2008). https://doi.org/10.1039/b805434g

    Article  Google Scholar 

  34. Lee, M.K., Smith, M., Koerner, H., Tabiryan, N., Vaia, R., Bunning, T., White, T.: Photodriven, flexural–torsional oscillation of glassy azobenzene liquid crystal polymer networks. Adv. Funct. Mater. 21(15), 2913–2918 (2011). https://doi.org/10.1002/adfm.201100333

    Article  Google Scholar 

  35. Yamada, M., Kondo, M., Mamiya, J., Yu, Y., Kinoshita, M., Barrett, C., Ikeda, T.: Photomobile polymer materials: towards light-driven plasticmotors. Angew. Chem. Int. Edit. 47(27), 4986–4988 (2008). https://doi.org/10.1002/anie.200800760

    Article  Google Scholar 

  36. Gelebart, H.A., Vantomme, G., Meijer, E.W., Broer, D.: Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators. Adv. Mater. 29(18), 1606712 (2017). https://doi.org/10.1002/adma.201606712

    Article  Google Scholar 

  37. Vantomme, G., Gelebart, H.A., Broer, J.D., Meijer, E.W.: Self-sustained actuation from heat dissipationin liquid crystal polymer networks. J. Polym. Sci. Pol. Chem. 56(13), 1331–1336 (2018). https://doi.org/10.1002/pola.29032

    Article  Google Scholar 

  38. Ahn, C., Li, K., Cai, S.: Light or thermally powered autonomous rolling of an elastomer rod. Acs. Appl Mater. Inter. 10(30), 25689–25696 (2018). https://doi.org/10.1021/acsami.8b07563

    Article  Google Scholar 

  39. Yang, L., Chang, L., Hu, Y., Huang, M., Ji, Q., Lu, P., Liu, J., Chen, W., Wu, Y.: An autonomous soft actuator with light-driven self-sustained wavelike oscillation for phototactic self-locomotion and power generation. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202070095

    Article  Google Scholar 

  40. Kageyama, Y., Ikegami, T., Satonaga, S., Obara, K., Sato, H., Takeda, S.: Light-driven flipping of azobenzene assemblies-sparse crystal structures and responsive behavior to polarized light. Chem. Eur. J. (2020). https://doi.org/10.1002/chem.202000701

    Article  Google Scholar 

  41. Zhao, D., Liu, Y.: A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever. Energy. 198, 117351 (2020). https://doi.org/10.1016/j.energy.2020.117351

    Article  Google Scholar 

  42. Kuenstler, A., Chen, Y., Bui, P., Kim, H., DeSimone, A., Jin, L., Hayward, R.: Blueprinting photothermal shape-morphing of liquid crystal elastomers. Adv. Mater. 2000609, 1–9 (2020). https://doi.org/10.1002/adma.202000609

    Article  Google Scholar 

  43. Jin, L., Lin, Y., Huo, Y.: A large deflection light-induced bending model for liquid crystal elastomers under uniform or non-uniform illumination. Int. J. Solids Struct. 48(22), 3232–3242 (2011). https://doi.org/10.1016/j.ijsolstr.2011.07.015

    Article  Google Scholar 

  44. Finkelmann, H., Nishikawa, E., Pereira, G.G., Warner, M.: A new opto-mechanical effect in solids. Phys. Rev. Lett. 87(1), 015501 (2001). https://doi.org/10.1103/PhysRevLett.87.015501

    Article  Google Scholar 

  45. Hogan, P.M., Tajbakhsh, A.R., Terentjev, E.M.: UV manipulation of order and macroscopic shape in nematic elastomers. Phys. Rev. E. 65(4), 041720 (2002). https://doi.org/10.1103/PhysRevE.65.041720

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge supports from the Outstanding Talents Cultivation Project of Universities in Anhui (Grant No. gxyqZD2019056), the Key Project of of Natural Science Research of Universities in Anhui (Grant Nos. KJ2018A0558 and KJ2020A0449) and the Talent Research Fund Project of Hefei University (Grant No. 16-17RC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Liang, X. & Li, K. Light-powered self-excited motion of a liquid crystal elastomer rotator. Nonlinear Dyn 103, 2437–2449 (2021). https://doi.org/10.1007/s11071-021-06250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06250-4

Keywords

Navigation